|
||||
|
||||
אתה למעשה כותב בדיוק על הבעיה. לכאורה, ההגדרה של "עוצמה" של קבוצה כפי שלומדים אותה בקורס מבוא של מתמטיקה בדידה נראית משונה מאוד. אתה יכול לנסות להשוות בין עוצמות, אבל אתה לא ממש יכול להגדיר מה זו ה"עוצמה" הזו שאתה משווה כל הזמן. המונה א0 (או אומגה) הוא -הקבוצה- בהא הידיעה לה אנו קוראים "העוצמה" א0. כנ"ל לגבי הסודר (והמונה) המכונה א1. ואכן, ללא אקסיומת הבחירה אי אפשר להראות שיש פונקציה מ A על B או להפך. ההוכחה משתמשת בלמה של צורן. |
|
||||
|
||||
חברים, רק הראיתי שלכל עוצמה יש עוצמה גדולה ממנה (בלי להניח את אקסיומת הבחירה). אבל זה *לא* אומר שבדרך הזאת אפשר לקבל את כל המונים/עוצמות!!! זהירות, אחיי. |
חזרה לעמוד הראשי | המאמר המלא |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |