בתשובה לאלון עמית, 14/08/03 20:47
חידה 163704
הנה.

נניח שיש N קלפים אדומים ו- N שחורים. יהי I_n האינדיקטור של המאורע "הקלף ה- n הוא אדום", ותהי F_n הסיגמא-אלגברה הנוצרת על ידי I_1,...,I_n. אז {F_n} היא פילטרציה במרחב ההסתברות, והסדרה {I_n} כמובן מותאמת אליה. עוד נגדיר
p_n = [N - I_1 - I_2 - ... - I_n]/(2N - n)
כלומר p_n הוא סיכוי הזכייה אם עוצרים לאחר שליפת n קלפים. הסדרה {p_n} כמובן מותאמת גם לפילרטציה. בעזרת קצת אלגברה ותוצאות בסיסיות על תוחלת מותנית מקבלים שהסדרה {p_n} היא מרטינגייל ביחס לפילטרציה שלנו.

היות שקבוצת הפרמטר של המרטינגייל היא חסומה על ידי 2N (או, לחילופין, היות שהסדרה {p_n} עצמה היא חסומה בין 0 ל- 1 בהסתברות 1), ניתן להפעיל את משפט ה- optional stopping למרטינגיילים האומר, במקרה שלנו, שלכל זמן עצירה T (המותאם לפילטרציה) מתקיים
E[p_T] = E[p_0] = 1/2

במילים יותר פשוטות: אי אפשר לנצח את המערכת. כל כלל עצירה המתבסס על צבע הקלפים שנחשפו עד כה יניב הסתברות זכיה של 1/2 (שזה בדיוק מה שנקבל אם נעצור בלי להפוך אף קלף, והזכייה/הפסד ייקבעו על פי הקלף הראשון בחפיסה).
Cool 163715
נחמד מאוד. אני לא משוכנע שזו ממש ''דרך נוספת'' כי החשבון הבסיסי שלך, זה שמראה שזה באמת מרטינגייל, הוא בדיוק החשבון של מ. השור. אבל זו דרך מקורית ויפה להסתכל על זה.

חזרה לעמוד הראשי המאמר המלא

מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים