|
נקרא למספרים האלה (אלו שבבסיס 3 אין להם אף 2) "נמוכים". אם יש סדרה חשבונית של נמוכים, הרי לפנינו מספרים a ו-d כך ש-a נמוך וכמוהו גם a+d וגם a+2d. זו פשוט הצורה הכללית של כל סדרה חשבונית בת שלושה איברים.
המספר d איננו 0, ולכן פיתוחו לבסיס 3 מכיל את הספרה 1 באיזה מקום. נביט במיקומה של הספרה 1 הימנית ביותר. למספר a מוכרח להיות 0 באותו המקום (אחרת בסכום a+d היינו מקבלים 2 במקום זה). למספר 2d יש הספרה 2 במקום הנדון, וכשנחבר ל-a את 2d נקבל, שוב, 2 במקום זה. מכאן שאם a וגם a+d נמוכים, a+2d לא יכול להיות נמוך. (הערה: הבטנו במספרה הימנית ביותר כדי לוודא שלא יהיו שום "שאריות" בתהליך החיבור עד שלב זה).
הטענה המקורית שטענתי היא יותר חזקה: אם מתחילים מ-0 ומוסיפים בכל שלב את המספר הקטן ביותר האפשרי שאינו יוצר סדרה חשבונית, מתקבלת בדיוק סדרת המספרים הנמוכים. (אני התחלתי מ-1, ולכן קיבלתי את אותה הסדרה מוזזת ב-1). את זה אפשר להוכית באינדוקציה, ואתה מוזמן לשאול אותי אם אתה נתקע (ואם זה מעניין אותך).
|
|