בתשובה לגדי אלכסנדרוביץ', 01/02/07 14:01
פרדוקסים 431561
למה צריך כאן את אקסיומת הבחירה? הסדר הטוב לא מובן מאליו כשמדובר בקבוצה בת מניה?
פרדוקסים 431569
אני צריך אותה לא בשביל סדר טוב, אלא כדי לבחור נציג של כל מחלקת שקילות. יש מספר לא בן מניה של מחלקות שקילות, ואין לי מושג איך להציג בחירה מפורשת של נציג לכל מחלקה, או אם אפשר בכלל.
פרדוקסים 431636
רגע, חשבתי שהבנתי אבל מסתבר שטעיתי. אתם אומרים שיש א1 מחלקות שקילות, נציג לכל מלחקה, ומספר הנציגים הוא א0? ובצד, איך מוכיחים שמס' מחלקות השקילות אינו בן-מניה?
פרדוקסים 431637
מכיון שעוצמת כל מחלקת שקילות היא א0, ויש 2^א0 איברים בקבוצה, הרי שיש 2^א0 מחלקות שקילות (ו2^א0 נציגים).
פרדוקסים 431638
לא יודע מי אמר שמספר הנציגים הוא א0, אבל הוא עבד עליך.

איך מוכיחים: מספר כל הסידורים האפשריים של כובעים הוא לא בן-מנייה (אלכסון קנטור); כל מחלקת שקילות היא כן בת-מנייה (מנה את הדרכים האפשריות לבצע מספר סופי של שינויים), ולכן מספר המחלקות איננו בן-מנייה.
פרדוקסים 431644
סליחה, הבנתי לא נכון את הפתרון של גדי - משום מה חשבתי שבוחרים אדם לייצג כל מחלקת שקילות (אולי הטעה אותי המשפט "יביט על הנציג"), ולשם כך אין מספיק אנשים.

תודה על ההוכחה; יש לי הרבה חלודה על גלגלי השיניים האלה, אבל כיף להתאמץ ולסובב אותם בכל זאת. ניסיתי ולא הצלחתי ללכסן קונסטרוקטיבית את מחלקות השקילות של החידה. יש דרך אלגנטית שפספסתי?
פרדוקסים 431647
לא רק אותך זה בלבל, גם את ראובן.

מה זה "ללכסן קונסטרוקטיבית"? לבחור קונסטרוקטיבית נציג לכל מחלקת שקילות? את זה אני חושש שאי-אפשר לעשות - אקסיומת הבחירה כנראה ממש נחוצה כאן. הפתרון דורש מאיתנו לדמיין שאינסוף אנשים המתכנסים לטכס עצה יכולים גם להכין פתקים עם מספר לא בן-מנייה של סידורים אפשריים מוסכמים.
פרדוקסים 431651
לא, ב''ללכסן קונסטרוקטיבית'' כוונתי להוכחה שקבוצת מחלקות השקילות לא בת-מנייה - האם אתה יכול לעשות זאת בדרך ה''קלאסית'' של נניח-בשלילה-שכן-נסדר-בשורה-נבנה-נציג-שלא-שייך.
פרדוקסים 431705
כן - חלק את האנשים לאינסוף קבוצות בגודל אינסוף A1,A2,A3...(אתה יודע איך...) ותשתמש באלכסון של קנטור:

מנה את מחלקות השקילות: M1,M2,M3...
(M עבור מחלקה :-) )
תגדיר את סידור הכובעים B הבא
לכל מחלקת שקילות,Mx, צבעי הכובעים של האנשים ב-Ax בסידור B הפוכים מאלה שב-Mx.
תוצאה: B אינו שקול ל-Mk לכל k טבעי.

(לפחות את זה הצלחתי)
פרדוקסים 431708
אופס.. צ"ל "צבעי הכובעים... הפוכים מאלה שבנציג כלשהו של Mx" (הופ - אקסיומת הבחירה)
פרדוקסים 431739
מתברר שרק להודות באייל על הבורות שלי גורם לי לפתור: קודם עם גדי, עכשיו איתך. את מה שאתה כותב ניסיתי, אבל לא הצלחתי לחלק את האינסוף לקבוצות (השלב הראשון שלך, שהנחת שהוא קל; צריך כמובן שהקבוצות תהיינה "זרות מספיק"). עכשיו גיליתי לבד איך. תודה בכל אופן (-:
פרדוקסים 431760
איך? אני חושב על חלוקה לקבוצות בעזרת ראשוניים (קבוצה אחת של כל האיברים שמספרם הסידורי הוא חזקה של 2; קבוצה אחרת של חזקות של 3, וכן הלאה - ועוד קבוצה של כל אלו שלא נכנסו לאף אחת מהקבוצות הללו) אבל בטח יש משהו יותר פשוט.
פרדוקסים 431766
אוי, אני חמור. כל הזמן חשבתי מסביב לראשוניים, אבל על חזקות שלהם לא חשבתי. מה שכן חשבתי בסוף הוא טיפה יותר מסובך משלך: הראשון הוא כפולות של 2; השני הוא כפולות של 3 שאינן כפולות של 2; ... ה-N הוא כפולות של המספר הראשוני ה-N שאינן כפולות של שום מספר ראשוני קטן יותר. אגב, אאל"ט אינך צריך את הקבוצה האחרונה שלך (מתי בכלל תשתמש בה?). מה שמעניין הוא ששני הפתרונות שלנו נותנים קבוצות זרות לחלוטין, שזה יותר חזק ממה שנחוץ - אאעל"ט[*] מספיק שלכל שתי קבוצות An, Am יהיו ב-An אינסוף אברים שאין ב-Am.

[*]עדיין
פרדוקסים 431795
אתה חמור? לעולם אל תכנה את עצמך בכינויים מעליבים. תמיד יימצאו אחרים שיעשו את זה טוב ממך :)
פרדוקסים 431800
איפה תשים את 6 למשל?
ועוד אפשרות: "מנה את הרציונליים החיוביים" (= העתקה חח"ע ועל מהם לשלמים החיוביים. אופס, לא ממש עזרתי נכון?), ותגדיר את הקבוצות כמספרים הסידוריים של כל הרציונליים בין 0 ל-‏1, בין 1 ל-‏2, בין 2 ל-‏3 וכו'. אבל זאת סתם התחכמות, ובטח יש מלא דרכים אחרות יפות.

אגב, אולי מישהו סוף סוף יגיד לי מה זה אאל"ט ותטל"א?
פרדוקסים 431802
אם אני לא טועה.
תשובה טובה לשאלה אחרת.
פרדוקסים 431808
בקבוצה הראשונה: כל האי זוגיים.
בשניה: האי זוגיים כפול 2.
ב-n: האי זוגיים כפול 2 בחזקת (n-1).
פרדוקסים 432068
הקבוצה השנייה מכילה את השלישית, לא?
פרדוקסים 432071
לי יוצא שהן זרות:
...2,6,10,14,18
לעומת
...4,12,20,28
תקן אותי אם אני טועה.

(הרעיון: מפרידים את הטבעיים לאי-זוגיים וזוגיים; קבוצת הזוגיים מתאימה לטבעיים כפול 2, אז אפשר לבצע בה הפרדה כמקודם; וחוזר חלילה).
פרדוקסים 432182
צודק, התבלבלתי.
פרדוקסים 431810
את 6 אני אשים בסדרה הראשונה, כפולות של 2. אבל כפי שאמרתי לגדי בנוגע לקבוצת-כל-השאר שלו, אני לא חייב בכלל לשים אותו - אני צריך תתי קבוצות אינסופיות של השלמים, אבל אני לא חייב לכסות את *כל* השלמים; רק במקרה יצא לי כך.

גם הדרך שלך לא פחות טובה - ואת ההעתקה מהרציונליים לטבעיים אני דווקא זוכר עדיין, לפחות זה (-:
פרדוקסים 431683
גם אני סברתי שיש אדם שמייצג כל מחלקה. אם לא, מהו הנציג המוסכם?
פרדוקסים 431684
אכן היה עדיף להשתמש בתיאור כמו "סידור כובעים מוסכם". מחלקות השקילות הן של *סידורי כובעים* ששונים זה מזה רק במספר סופי של כובעים - לכן, לכל מחלקת שקילות בוחרים סידור כובעים מסויים מתוכה, ש"ייצג" אותה. אני פשוט כבר רגיל למחלקות שקילות ולכן "נציג" מתורגם אצלי אוטומטית ל"נציג של מחלקת שקילות", ולא לקונוטציות אפשריות אחרות.
פרדוקסים 431687
עם מחלקות שקילות אין לי בעיה, אבל מה פירוש "סידור כובעים מסוים" מתוך המחלקה? ומי בוחר את הסידור הזה?
פרדוקסים 431688
זו פשוט ההתאמה של כובע לכל אדם בקבוצה. למשל, סידור אחד הוא זה שבו לכל האנשים כובע שחור, סידור אחר הוא זה שבו לכולם כובע לבן, באחד אחר יש כובע שחור לכל האנשים שמספרם זוגי ולבן לכל אלו שמספרם אי זוגי (אם יש מספר בן מניה של אנשים, אפשר להתאים לכל אחד מספר מזהה שלם חיובי), וכו'.
פרדוקסים 431572
כל מחלקת שקילות היא בת מניה, אבל אוסף המחלקות אינו כזה! (בפרט, בטקס התיאום והחלפת האינפורמציה שלפני חשיפת הכובעים יש להעביר כמות אינפורמציה שאינה בת מניה, וזה גם צריך להיות גודל הזכרון הנגיש לכל משתתף).

חזרה לעמוד הראשי

מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים