|
||||
|
||||
לא טענתי ש"במתמטיקה לא ניתקל בחוסר היכולת לדעת". זה היה ציטוט של הילברט שעסק בשלמות המתמטיקה. כולנו יודעים שהוא טעה. הלאה. "מתמטיקה תלויית-שאיפות 'מעגלי-פינות"' - האם למתמטיקאי שעובד היום במסגרת תורת הקבוצות יש הנחות סמויות? אם הייתי נותן לך תיאור מפורט, מדויק ו*מלא* של כל הנחות היסוד ודרכי ההיקש שלו, זו הייתה הוכחה לכך שהתשובה היא "לא". כל ההנחות גלויות. למזלנו, אנחנו יודעים שיש תיאור כזה. מאחר שתורת הקבוצות היא תורה אפקטיבית, ניתן לכתוב תוכנת מחשב מסוימת, ולהגדיר את הנחות היסוד וצעדי ההיקש המותרים כ"כל הנחת יסוד / צעד היקש שהתוכנה מחזירה עבורו 'כן'." היותו של המחשב "סוכן" / "בבואה" של האדם לא קשורה לעניין. העניין הוא שכל ההנחות שלנו גלויות. איפה הגבתי לטענתך לגופו של אדם? |
|
||||
|
||||
"היותו של המחשב "סוכן" / "בבואה" של האדם לא קשורה לעניין" אייל צעיר, הסבר נא *בפירוט* כיצד "היותו של המחשב "סוכן" / "בבואה" של האדם לא קשורה לעניין"? |
|
||||
|
||||
נראה לי שכובד ההוכחה מונח על מי שטוען שיש קשר. |
|
||||
|
||||
''נראה לי שכובד ההוכחה מונח על מי שטוען שיש קשר.'' טעות בידך, כל טענה (כולל טענה לאי-קשר) דורשת הוכחה. |
|
||||
|
||||
אנא הוכח שאין קשר בין האלכסון של קנטור לבין אבירי השולחן העגול. |
|
||||
|
||||
מה זאת אומרת אין קשר? למה אתה חושב שהשולחן היה עגול? |
|
||||
|
||||
השולחן *לא* היה עגול. "אבירי-השולחן-העגול" הוא ביטוי יחיד, המגשר בין תודעת המלכות לבין מושגי הגיאומטרייה. לא ניתן לחתוך אותו לחתיכות, בדיוק כפי שלא ניתן לומר ש"פרפר" הוא שני פרים, או ש"גרזן" הוא מישהו שגר במקדש זן. הגיע הזמןו שתלמד קצת לשון (וגם פליאונטולוגיה ונגרות). |
|
||||
|
||||
אם ניתן לתאר את כל ההנחות שלנו ולכתוב את התיאור על דף נייר (תיאור כזה: קוד של התוכנה הרלוונטית) אז אף אחת מההנחות שלנו איננה סמויה. |
|
||||
|
||||
"אם ניתן לתאר את כל ההנחות שלנו ולכתוב את התיאור על דף נייר " *אם* זאת מילת מפתח, והנחת המבוקש מתקיימת תמיד ב"כתם העיוור" של הנושא הנחקר, ואין שום דרך לבטל בביטחון מוחלט קיומה של הנחת המבוקש כי איננו יודעי כל. |
|
||||
|
||||
או.קיי. אותו משפט, בלי המילה "אם": א. ניתן לתאר את כל ההנחות שלנו ולכתוב את התיאור על דף נייר. ב. אין לנו הנחות סמויות 1. 1 אם הן מופיעות על אותו דף נייר, הן לא סמויות יותר. נכון? |
|
||||
|
||||
". ניתן לתאר את כל ההנחות שלנו ולכתוב את התיאור על דף נייר." הוכח את הטענה *כל*. |
|
||||
|
||||
"כל" היא לא טענה. אבל, מאחר ששנינו יודעים למה אתה מתכוון, אני בכל זאת אתן לך קישור מצוין: http://us.metamath.org/mpegif/mmset.html#axioms |
|
||||
|
||||
""כל" היא לא טענה." חביבי, הסר או הוסף את *כל* למשפט מתמטי כלשהו, ואתה מקבל משפט שונה בתכלית. |
|
||||
|
||||
"כל 1+1=2"? "כל אין מספר זוגי גדול מ-2 שאיננו סכום של שני ראשוניים"? "כל עבור כל חבורה G, הסדר של כל תת-חבורה של G מחלק את הסדר של G"? (אנחנו נטפלים לקטנות) |
|
||||
|
||||
"(אנחנו נטפלים לקטנות)" אוקיי בוא נדייק. הסר או הוסף *כל* ממשפט מתמטי המופנה בעקיפין או במישרין לעצמו, (כמו במקרה של S) , וקיבלת מצבים שונים בתכלית. |
|
||||
|
||||
"לכל x, המשפט הזה הוא שקר"? "לכל x, יש במשפט הזה שבע מילים"? "לכל x, המשפט הזה ניתן להוכחה"? |
|
||||
|
||||
משפט מתמטי אינו נגמר בסימן שאלה. |
|
||||
|
||||
סימן השאלה נמצא אחרי הגרשיים. |
|
||||
|
||||
"לכל x, המשפט הזה הוא שקר"? עיין נא ב-http://www.geocities.com/complementarytheory/Russell... |
|
||||
|
||||
עיינתי כבר בעבר. בכל אופן, למרות שהזכרתי את פרדוקס השקרן, אין לי רצון לדון בפתיל הזה בפרדוקס של ראסל. מה שרציתי להגיד הוא שבהינתן פסוק, ולא חשוב האם הוא מתייחס לעצמו או לא, אם נוסיף בתחילתו את המילים "לכל x", נקבל אחד מן השניים: א. נוסחה חסרת פשר, למשל: "לכל x קיים x, כך של-x אין עוקב." ב. פסוק שקול לפסוק המקורי. זאת בניגוד למה שטענת בתגובה 341054. |
|
||||
|
||||
מה גורם לך לחשוב שהנוסחה ב-א. חסרת פשר? מקובל לראות משתנה ככבול לכמת האחרון בו הוא מופיע. |
|
||||
|
||||
אה, באמת? לא ידעתי. בכל אופן, דורון עדיין טעה: אם נוסיף בתחילת פסוק את הביטוי "לכל x", נקבל פסוק שקול. |
|
||||
|
||||
הגדרה הפונה לעצמה (כתוצאה מהתנאי כל) ואינה מקיימת את תנאי עצמה, אינה קיימת מלכתחילה, וזהו בדיוק גורל "קיומו" של S . |
|
||||
|
||||
(כל הכבוד. התעלמות אלגנטית מהעובדה שהפתיל הוא לא על הפרדוקס.) אם S היא הקבוצה S={x|x not in x} אז אתה צודק, והקבוצה הזאת לא קיימת. הצרה היא שע"פ האקסיומות של פרגה ניתן להוכיח גם שהיא כן קיימת. מכאן, שהאקסיומות של פרגה לא עקביות. לכן, היה צריך להחליף אותן. זה כל הסיפור.
|
|
||||
|
||||
"(כל הכבוד. התעלמות אלגנטית מהעובדה שהפתיל הוא לא על הפרדוקס.)" אי-קיומה של S מעצם הגדרתה שלה, מונע קיומו של פרדוקס. מה שהדגמתי בסיפורה האומלל של S , הוא את ההתנהלות הלא-תבונית של תודעה, אשר לא טורחת לבחון את היתכנות קיומם של הגדרותיה וחושבת שכל היוצא מפיה הינו תנאי מספיק לקיומו. |
|
||||
|
||||
שוב, זו בדיוק הבעיה באקסיומות של פרגה. הפרדוקס נובע מההנחה שכל תנאי אכן מגדיר קבוצה, והעובדה שהתייחסו אליו כפרדוקס פירושה שה"תודעה" התנהלה בצורה כן תבונית וטרחה לבדוק את היתכנות קיומם של הגדרותיה. האם אתה טורח לבדוק את פשר הדברים שאתה אומר? שמת לב כבר כמה פעמים בדיון הזה התייחסת לכל המתמטיקאים עד אלייך כאילו היו אידיוטים גמורים? |
|
||||
|
||||
גדי, דבריי פשוטים ביותר. אני טוען שפיתוח שפת המתמטיקה תוך התייחסות לתכונות מנימליות ולא-אישיות של התודעה, כבסיס לפיתוח שפה זו, מעשיר ומעמיק לאין ערוך את אפשרויות המחקר המתמטי ובאותה עת טורם להעשרתה ולעידונה של התודעה העוסקת בו. הדגמתי בפשטות כיצד מתקיים המספר הטבעי, אם הוא נובע מחקר התודעה כבסיס מכונן שלו (http://www.geocities.com/complementarytheory/gishoor... עמודים 2-5). הסברתי בקצרה כמיטב יכולתי את תהליך התפתחות רעיונותי ב-http://forum.bgu.co.il/index.php?showtopic=46751 . תקיפה לגופו של אדם לא משנה את הצורך להבין את הרעיונות *לפני* שמביעים את דעתם עליהם, ואני טוען כי היות ואף מתמטיקאי ב-500 שנה האחרונות לא מבסס את מחקרו על התודעה כגורם מכונן *גלוי* של המחקר המתמטי, יוצאות הן התודעה (או יותר נכון, חקר התודעה) והן חקר המתמטיקה נפסדות. בעניין פרגה, אני מוכיח ב-http://www.geocities.com/complementarytheory/Russell... כי הפרדוקסים של ראסל לא היו ולא נבראו. עוד בעניין פרגה אני מראה ב-http://www.geocities.com/complementarytheory/ONN3.pd... (עמ' 21-23) כי קהילת המתמטיקאים לא חקרה עמוקות (עד כה) את פועלו של פרגה. |
|
||||
|
||||
נניח שמערכת אקסיומות מסוימת מוכיחה שיש תפוח כחול, אבל גם מוכיחה שאין תפוח כחול 1. מה תגיד על מערכת האקסיומות? א. לא יכול להיות תפוח כחול (ניתן להוכיח במערכת האקסיומות שלנו, שההגדרה הזאת מובילה לסתירה, ולכן התפוח לא יכול להתקיים). זה מונע את הפרדוקס. ב. מערכת האקסיומות אינה עקבית, ויש להחליף אותה. ג. אין שום בעיה עם קיומה של סתירה כי <הכנס כאן הסבר כרצונך עם XOR ו-AND (אין צורך לפרט)>. ד. אחר (פרט). 1 ונוסיף עוד הנחה קטנה: ניתן להוכיח במערכת, שאם ניתן להוכיח בה טענה כלשהי וגם את שלילתה, ניתן להוכיח בה כל טענה. |
|
||||
|
||||
מרחב הקיום המבוסס על סינתיזה בין הפכים, אינו מגיע לידי סתירת האלמנטים הקיימים בו, כי הסינתיזה הינה *תמיד* תוצר של פתרון קונסטרוקטיבי בין הפכים. בקיצור אייל צעיר, עדיין לא הזזת את עצמך מעולם המושגים הנובע מלוגיקת הסתירה בין הפכים, ואין שום סיכוי שתבין את מושג הסינתיזה ע"י בחינתה מדקונסטרוקציה (סתירה) בין הפכים. |
|
||||
|
||||
אתה חושב שיש שתי טענות שלא ניתן או שלא צריך ליצור סינתזה ביניהן? |
|
||||
|
||||
"אתה חושב שיש שתי טענות שלא ניתן או שלא צריך ליצור סינתזה ביניהן?" מצטער לא הבנתי אותך. |
|
||||
|
||||
אני אנסה לשאול זאת אחרת: *למה* צריך בכלל ליצור סינתזה בין הטענה "קיימת קבוצת ראסל" לטענה "לא קיימת קבוצת ראסל"? איך זה מסתדר עם העובדה שאתה (כמוני, וכמו כל אחד אחר) לא מקבל את הטענה הראשונה? |
|
||||
|
||||
אם לא-קיים הוא ריקנות מוחלטת וקיים הוא מלאות מוחלטת, אז הסינתיזה שבין מצבי קיצון אלה הינה אלנמטים המשלבים מלאות (רצף) וריקנות (בדידים). |
|
||||
|
||||
א. "לא קיימת קבוצת ראסל" זו טענה שאומרת שאולי קיימות המון-המון קבוצות אחרות, אבל לא חשוב כמה תחפש, לא תמצא ביניהם את קבוצת ראסל. אין קשר לריקנות מוחלטת. כנ"ל לגבי הטענה הנגדית. ב. זה לא עונה על השאלה *למה* צריך סינתזה בין ריקנות למלאות. קל וחומר שזה לא עונה על השאלה למה צריך סינתזה בין הטענות "יש קבוצת ראסל" ו"אין קבוצת ראסל". ג. מה הקישור שיצרת בין ריקנות ובדידיות? חשבתי שאלה שני דברים נפרדים לחלוטין. {} ו-{.} הם שני אטומים נפרדים לחלוטין, לא?! ד. האם יש עוד אלמנטים מלבד התודעה, שמשלבים רציפות ובדידיות? |
|
||||
|
||||
אייל צעיר, הנה ציטוט מתגובה 327731 שלך: "בעולם המתמטי של היום, לא זו בלבד שהכל מבוסס על אקסיומות יציבות, אלא שגם דרך ההיקש שלנו פורמלית לחלוטין." איזה אקסיומות יציבות ואיזה נעליים? אקסיומת-הקיום של הקבוצה-הריקה מניחה כי הקבוצה הריקה קיימת ללא תלות באקסיומת-הקיום (הכמת "לכל" פועל על הקבוצה-הריקה במנותק מאקסיומת-הקיום שלה) או במילים אחרות, הנחת המבוקש היא הבסיס המכונן של אקסיומה זו, כפי שהראיתי בבירור בדיון זה. בו ונבחן "הנחת המבוקש" נוספת הקיימת בבסיס אקסיומת ZF נוספת: The axiom of extensionality: מכיוון שאקסיומה זו קובעת את הייחודיות של קבוצה ע"י איבריה, ניתן לנסח אותה גם בדרך הבאה:Given any set A and any set B, A is equal to B if and only if, given any set C, C is a member of A if and only if C is a member of B. what the axiom is really saying is that two sets are equal iff they have precisely the same members. The essence of this is: A set is determined uniquely by its members. A ו- B הן קבוצות שונות אם ורק אם קיימת קבוצה C ב-A ולא ב-B , או ב-B ולא ב-A . אך כדי לזהות את C בתוך A או את C בתוך B , אנחנו מניחים כי שאר אברי B או A (אם B או A קבוצות לא ריקות) שונים זה מזה ושונים מ-C . אך הריי ייחודיות זו אמורה להיות מוגדרת ע"י The axiom of extensionality , ועתה אנו מגלים כי אקסיומה זו מבוססת על "הנחת המבוקש" של הגדרת יחודיות של קבוצה ע"י קיום מראש של יחודיות בין איבריה, כאשר איבריה הן קבוצות. במילים אחרות יש לנו כאן הגדרת יחודיות ע"י שימוש ביחודיות, או בקיצור: הנחת המבוקש. |
|
||||
|
||||
"אך כדי לזהות את C בתוך A או את C בתוך B , אנחנו מניחים כי שאר אברי B או A (אם B או A קבוצות לא ריקות) שונים זה מזה ושונים מ-C." לא נכון. וחובת ההוכחה מוטלת עליך. |
|
||||
|
||||
"לא נכון. " נכון ועוד איך ! |
|
||||
|
||||
האייל האלמוני מתגובה קודמת הוא אני. |
|
||||
|
||||
אני לא יודע למה צריך "לזהות את C בתוך A". אני לא מכיר פעולה כזאת, "לזהות" איבר בקבוצה. |
|
||||
|
||||
איך תדע עם C איננה ב-A אם אינך מסוגל להבדיל בינה לבין איברים נוספים הכלולים בה? The axiom of extensionality אמורה לאפשר הבחנה זו, אך היא משתמשת ביכולת הבחנה כדי להגדיר יכולת הבחנה, וזוהי כמובן טענה מעגלית והנחת המבוקש. |
|
||||
|
||||
אם תרשה לי להתערב, אני מאמין שדורון חושב שהאקסיומה הנ"ל מגדירה את יחס השוויון. מה שהוא לא מבין הוא שהשוויון תמיד מוגדר כזהות (כלומר A=B אםם A ו B הם אותו איבר). האקסיומה הזו רק אומרת משהו על היחס בין שוויון לבין שייכות. |
|
||||
|
||||
"אני מאמין שדורון חושב שהאקסיומה הנ"ל מגדירה את יחס השוויון" אמונתך לא תעזור לך במקרה זה, כי אני טוען להגדרה מעגלית באקסיומה המגדירה הבחנה, ע"י השימוש בהבחנה. אני מציע שתקרא בזהירות את תגובה 340066 ואז תבין כי איני מדבר על מושג השיוויון, אלא על הנחת המבוקש הנובעת מהגדרת הבחנה ע"י שימוש ביכולת ההבחנה. |
|
||||
|
||||
כן, אבל אתה טועה. אם אני מבין אותך נכון, כשאתה אומר "להבחין", אתה מתכוון: לדעת אם X שונה מ Y. ולכן אתה כן מדבר על מושג השוויון (כי "שונה" = "לא שווה"). לכן האקסיומה הזו לא מגדירה את ההבחנה, שכן היא כבר מוגדרת. היא פשוט אומרת משהו על אותה הבחנה. |
|
||||
|
||||
"כן, אבל אתה טועה. אם אני מבין אותך נכון," אינך מבין כי אקסיומה זו אינה עוסקת בשיוויון או באי-שיוויון בין קבוצות, אלא ביחודיות של איברי קבוצות, כפי שנאמר בבירור ב-http://en.wikipedia.org/wiki/Axiom_of_extensionality : A set is determined uniquely by its members ולכן אומר זאת שוב:מכיוון שאקסיומה זו קובעת את *הייחודיות* של קבוצה ע"י איבריה (ואיננה מוגבלת לשיוויון או לאי-שיוויון בין קבוצות) ניתן לנסח אותה גם בדרך הבאה: A ו- B הן קבוצות *שונות* אם ורק אם קיימת קבוצה C ב-A ולא ב-B , או ב-B ולא ב-A . אך כדי לזהות את C בתוך A או את C בתוך B , אנחנו מניחים כי שאר אברי B או A (אם B או A קבוצות לא ריקות) שונים זה מזה ושונים מ-C . אך הריי ייחודיות זו אמורה להיות מוגדרת ע"י The axiom of extensionality , ועתה אנו מגלים כי אקסיומה זו מבוססת על "הנחת המבוקש" של הגדרת ייחודיות של קבוצה ע"י קיום מראש של ייחודיות בין איבריה, כאשר איבריה הן *קבוצות*. במילים אחרות יש לנו כאן הגדרת יחודיות ע"י שימוש ביחודיות, או בקיצור: *הנחת המבוקש*. |
|
||||
|
||||
הנח או אל תנח? אתנחתה קומית |
|
||||
|
||||
דורון: A ו- B הן קבוצות *שונות* אם ורק אם קיימת קבוצה C ב-A ולא ב-B , או ב-B ולא ב-A . אני: נכון, ולכן זו אקסיומה שעוסקת בשוויון בין קבוצות. הנה, אתה השתמשת במפורש במילה "שונות", ואפילו הדגשת אותה. דורון: אקסיומה זו אינה עוסקת בשיוויון או באי-שיוויון בין קבוצות, אלא ביחודיות של איברי קבוצות. אני: מה זה יחודיות של אברי קבוצות? דורון: אך כדי לזהות את C בתוך A או את C בתוך B , אנחנו מניחים כי שאר אברי B או A (אם B או A קבוצות לא ריקות) שונים זה מזה ושונים מ-C. אני: אבל זה לא קשור לאקסיומה, כבר כשאמרת את המילה "שאר" ברור שהאיברים הנ"ל שונים מ C (למשל במשפט "יוסי ילד נחמד, שאר הילדים לא כל כך" הכוונה במילה שאר היא הילדים השונים מיוסי). וכשאתה אומר איברים, ברור שאתה מתכוון שהם שונים זה מזה, אלא אם הם שווים. (למשל, במשפט הקודם, ברור שהילדים שונים זה מזה). דורון: אך הריי ייחודיות זו אמורה להיות מוגדרת ע"י The axiom of extensionality , ועתה אנו מגלים כי אקסיומה זו מבוססת על "הנחת המבוקש" של הגדרת ייחודיות של קבוצה ע"י קיום מראש של ייחודיות בין איבריה, כאשר איבריה הן *קבוצות*. אני: לא נכון, שוויון ושוני מוגדרים בכל המודלים בדיוק באותו אופן - כזהות וחוסר זהות בהתאמה. דורון: ? |
|
||||
|
||||
לא הבנת את תגובתי הקודמת, שבה נאמר בפירוש כי ה-axiom of extensionality מגדירה את הייחודיות של קבוצות עפ"י איבריהן, כאשר ייחודיות היא שילוב של זהות ושונות, אך אנו מבחינים בין איברי הקבוצות ללא כל קשר לקיומה או אי-קיומה של האקסיומה הנ"ל, ולכן אקסיומה זו מבוססת על הנחת המבוקש, כאשר ההנחה היא קיום ייחודיות בין איברי קבוצות על ידי שילוב בין זהות לשונות. "שילוב בין זהות לשונות" הינו למעשה "ייחודיות", ולכן הנחת קיום הייחודיות של אבריי קבוצה מבוססת על המושג המבוקש, ולכן ה-axiom of extensionality מבוססת על *הנחת המבוקש*. |
|
||||
|
||||
ועוד אוסיף ואומר כי "שווה" ו-"זהה" אינם אותו הדבר, לדוגמא: a =|{1,2,3}| אך a אינו זהה ל-b
b =|{4,5,6}| |a|=|b| |
|
||||
|
||||
תיקון לתגובה קודמת: a ={1,2,3} אך a אינו זהה ל-b .
b ={4,5,6} |a|=|b| |
|
||||
|
||||
אין ספק שבתגובה הזו הוכחת מבחינתי סופית שאו שאין לך שום הבנה במתמטיקה או שיש לך ואתה דמגוג סוג ד'. כתוצאה מכך אני מפסיק להכנס לדיון הזה. (מה שכתוב שם זה שהגודל של a זהה לגודל של b. זה כמו שתכתוב מקום=place אבל ק לא שווה ל-l). |
|
||||
|
||||
"זה כמו שתכתוב מקום=place אבל ק לא שווה ל-l)." בשום אופן לא. הסימון לשיוויון הוא: ___ ___ הסימן לזהות הוא: ___ ___ ___ האח של סמיילי כתב: "שוויון ושוני מוגדרים בכל המודלים בדיוק באותו אופן - כזהות וחוסר זהות בהתאמה." מתוך דבריו אלה נובע כי אין הוא מבחין בין *זהות* *לשיווין*, ולכן הדגמתי את ההבדל על הקבוצות a ו-b , כאשר הקרדינל של a והקרדינל של b *שווים*, אך a ו-b *אינם זהים*, כך שלדבר על זהות ושיוויון כאילו זה אותו מושג הינו חוסר הבנה בסיסי במתמטיקה. |
|
||||
|
||||
תהיה רציני. אם הקרדינל של a והקרדינל של b שווים, וזהות ושיוויון הם מושגים זהים, אז המסקנה היא שהקרדינל של a והקרדינל של b זהים, לא שa וb זהים. |
|
||||
|
||||
a אינו זהה ל-b, כי a אינו שווה ל-b. |a| זהה ל-|b|, כי |a| שווה ל-|b|. |
|
||||
|
||||
"a אינו זהה ל-b, כי a אינו שווה ל-b. |a| זהה ל-|b|, כי |a| שווה ל-|b|." בקיצור, אתה אומר כי לזהה ושווה יש אותו מובן בשפת המתמטיקה המודרנית. היות ושפתי עשירה יותר, אני אומר שזהות קיימת רק בין אלמנט לעצמו, בעוד ששיוויון מבוסס על תכונה משותפת (כמו קרדינל למשל) בין אלמנטים שונים. |
|
||||
|
||||
אין שיוויון בין אלמנטים שונים. |a| ו-|b| הם אותו אלמנט, שהוא המספר 3. |
|
||||
|
||||
|a|, |b| ו-3 הם לא אותו האלמנט, אלא שלושה אלמנטים שונים בעלי תכונה (כמותית) משותפת. באופן דומה לכך ש-1+1 לא זהה ל-2, אבל כן שווה ל-2. |
|
||||
|
||||
קיוויתי שאף אחד לא יזכיר את 1+1. אז קיוויתי. |
|
||||
|
||||
מוהאהאהאהאהא. |
|
||||
|
||||
זהות היא חפיפה מוחלטת בין מספר אלמנטים המובילה אותנו *בהכרח* למסקנה כי אנו עוסקים באלמנט אחד ויחיד. שיוויון הוא חפיפה חלקית בין אלמנטים *שונים* המקיימים תכונה או מספר תכונות משותפות. אביב נתן דוגמאות מצוינות לכך, ואני אוסיף משלי. פיז'ו אדומה ומיץ פטל חולקים תכונה משותפת שניתן לכנותה "אדומיות", אך אין להסיק מכך כי יש זהות בין פיז'ו למיץ פטל. במצב זה אנו אומרים כי יש שיוויון בין פיז'ו למיץ פטל אך אין זהות ביניהם. התעלמות מהשייכות של ה"אדומיות" לפיז'ו ולמיץ פטל שקולה לאמירה "אדומיות" זהה ל-"אדומיות", אך אז אין אנו עוסקים בתכונה משותפת בין אלמנטים שונים (מה שאני מכנה כ-"שיוויון") אלא בזהות של "אדומיות" לעצמה, במנותק מכל שייכות לאלמנט כלשהו. לסיכום, זהות היא התייחסות של אלמנט לעצמו ולעצמו בלבד, ושיוויון הינה חפיפה חלקית בין אלמנטים *שונים*. |
|
||||
|
||||
לא, אין בשום אופן שיוויון בין פיז'ו למיץ פטל. יש שיוויון בין ה*צבע* של פיז'ו ל*תבע* של מיץ הפטל. הצבע של הפיז'ו *זהה* לצבע של מיץ הפטל. |
|
||||
|
||||
ברגע שאתה מתייחס לצבע ואך ורק לצבע, אז ורק אז אתה יכול להגיד ש-"אדומיות זהה ל-"אדומיות" ולכן אין כל משמעות למשפט "הצבע של ...". ברגע שהאדומיות מובנת כ"צבע של ..." הרי שהיא תכונה משותפת *חלקית* של שני אלמנטים *שונים* ולכן ניתן לומר אליה כי היא תכונה שווה לשניי אלנמטים *שונים*. האם ההבדל בין זהות לשיוויון מובן על-ידך? |
|
||||
|
||||
האייל האלמוני בתגובה קודמת הוא אני. |
|
||||
|
||||
אם שני אלמנטים לא זהים, הם גם לא שווים. יכולים להיות שני אלמנטים שונים, שתכונה מסוימת שלהם זהה. |
|
||||
|
||||
''אם שני אלמנטים לא זהים, הם גם לא שווים'' ''תודה'' שאתה מתעלם ממה שאני כותב. |
|
||||
|
||||
אני "מודה", אבל לא מודה. (גם) בתגובה 342181 אתה מראה שאתה חושב שאם לשני אובייקטים יש תכונה משותפת כלשהי, אז הם שווים. הם לא. עד עכשיו לא הראית שום דוגמה למצב שבו שני אובייקטים 1 זהים אבל לא שווים או להיפך. 1 האובייקטים *עצמם*, לא תכונות חלקיות שלהם. |
|
||||
|
||||
"אתה מראה שאתה חושב שאם לשני אובייקטים יש תכונה משותפת כלשהי, אז הם שווים." אם כך אתה כותב, אז עדיין לא הבנת את שאני כותב בנדון, ומה שאני כותב הוא זה: שים לב שאינני מדבר על שניי האלמנטים אלא על תכונת "האדומיות" ומתי אנו משתמשים ביחס אליה במושגים זהה ושווה, הנה דברי והפעם קרא נא אותם לפני שאתה מגיב: ברגע שאתה מתייחס לצבע ואך ורק לצבע, אז ורק אז אתה יכול להגיד ש-"אדומיות זהה ל-"אדומיות" ולכן אין כל משמעות למשפט "הצבע של ...". ברגע שהאדומיות מובנת כ"צבע של ..." הרי שהיא תכונה משותפת *חלקית* של שני אלמנטים *שונים* ולכן ניתן לומר אליה כי היא תכונה שווה לשניי אלנמטים *שונים*. בדיוק באותה מידה אם a={1,2,3} ו-b={4,5,6} (ונסלח לממשק המשתמש שח האייל-הקורא) , אז הקרדינל השייך להם הוא תכונה חלקית של שתיי קבוצות שונות ולכן הקרדינל של a *שווה* לקרדינל של b , ואילו 3 *זהה* ל-3 ללא כל קשר להיותו משמש כקרדינל לשתיי קבוצות שונות. האם ההבדל בין זהות לשיוויון מובן לך? |
|
||||
|
||||
>אם כך אתה כותב, אז עדיין לא הבנת את שאני כותב בנדון או שאתה לא יודע להסביר ואז כל מה שאתה צריך לעשות זה לשכור שרותי יחצנות טובים או שאין מה להסביר ואז אתה צריך אמרגן טוב למופע סטנד-אפ |
|
||||
|
||||
אוי טעית. בקשר לטרחנים כפייתיים כמוני יש רק מסקנות אינסופיות. |
|
||||
|
||||
לשאלתך האחרונה: לא. כל שני אובייקטים שווים הם זהים, וכל שני אובייקטים זהים הם שווים. אם כך, שני המושגים זהים. |
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
דורון: לא הבנת את תגובתי הקודמת אני: כן הבנתי. דורון: ייחודיות היא שילוב של זהות ושונות. אני: מה? דורון: אקסיומה זו מבוססת על הנחת המבוקש, כאשר ההנחה היא קיום ייחודיות בין איברי קבוצות על ידי שילוב בין זהות לשונות. אני: לא נכון, אין כזאת הנחה. מה שאתה קורא "הבחנה בין איברי קבוצות" הוא פשוט התנאי X שונה מ Y. שונה משמעותו לא זהה. דורון: ועוד אוסיף ואומר כי "שווה" ו-"זהה" אינם אותו הדבר, לדוגמא: a ={1,2,3} אך a אינו זהה ל-bb ={4,5,6} |a|=|b| אני: אתה רציני? כל מה שהראית זה שהגודל אינו קובע את התוכן של קבוצה. |
|
||||
|
||||
"אתה רציני? כל מה שהראית זה שהגודל אינו קובע את התוכן של קבוצה." קרא נא את תגובה 340989 . מה שהראתי הוא ששיוויון וזהות הם שני מושגים שונים במתמטיקה, והדגמתי זאת על ידי אי-הנרדפות של מושגים אלה, כאשר הם מיוחסים לשתיי קבוצות. בקיצור, שיוויון אינו מחייב זהות אך זהות מחייבת שיוויון, ולכן שיוויון הינו תנאי חלקי לזהות. ה-axiom of extensionality אינה עוסקת בזהות או שונות כמושגים נפרדים, כי רק שילובם מאפשר קביעת ייחודה של קבוצה עפ"י אבריה. נסה נא *לזהות שונות* (לקבוע ייחודיות) ללא שילוב המושגים *זהה* ו-*שונה*. שילוב זה הינו *הכרחי* לקביעת תוכנה היחודי של קבוצה, והוא אינו תלויי כלל ועיקר באקסיומה שכביכול "מגדירה" אותו. אי-תלות זו הופכת את ה-axiom of extensionality למיותרת בתכלית (האקסיומה הזו "מגלה את אמריקה"). |
|
||||
|
||||
דורון: מה שהראתי הוא ששיוויון וזהות הם שני מושגים שונים במתמטיקה, והדגמתי זאת על ידי אי-הנרדפות של מושגים אלה, כאשר הם מיוחסים לשתיי קבוצות. אני: אולי הראית את זה, אבל מה לעשות שזה פשוט לא נכון. דורון: קרא נא את תגובה 340989 . אני: קראתי. ועכשיו למה שהמתמתיקה המודרנית חושבת: הסימן "=" מסמל זהות. תמיד. הסימן של שלושה קוים מסמל יחס שקילות כלשהו, בהתאם להקשר. למשל 3 שווה 5 מודולו 2. כאן השוויון יסומן בשלושה קווים, אבל זה לא באמת שוויון, כי הם לא זהים. לעומת זאת, בשדה Z מודולו 2Z אפשר לכתוב 3=5, כי הם אותו איבר - 1. דורון: אי-תלות זו הופכת את ה-axiom of extensionality למיותרת בתכלית (האקסיומה הזו "מגלה את אמריקה"). אני: אבל בלי האקסיומה הזו קשה להבין את הקשר בין יחס השוויון לבין יחס השייכות. חוץ מזה, קל למצוא קבוצות שלא חושבות שאקסיומה זו מתקיימת בהן. למשל A={{1},{2}} ברור ש {1} שונה מ {2} אבל אין איבר ב A שמבדיל ביניהם.
|
|
||||
|
||||
"אני: אבל בלי האקסיומה הזו קשה להבין את הקשר בין יחס השוויון לבין יחס השייכות. חוץ מזה, קל למצוא קבוצות שלא חושבות שאקסיומה זו מתקיימת בהן. למשל A={{1},{2}} ברור ש {1} שונה מ {2} אבל אין איבר ב A שמבדיל ביניהם."ב-http://en.wikipedia.org/wiki/Axiom_of_extensionality נאמר בפירוש כי האקסיומה הנ"ל משמשת לקביעת ייחודה של קבוצה עפ"י איבריה, אך מכיוון שה-axiom of extensionality מבוססת על יכולתנו המובנית להבחין בייחודיות של קבוצה עפ"י איבריה תוך שילוב *הכרחי* של זהות ושונות, אין שום צורך להגדיר יכולת זו ע"י אקסיומה, כי אם עושים זאת הריי שאנו מסתמכים על התכונה המובנית הקיימת בנו, כדי להגדיר אקסיומה המשתמשת בתכונה זו כבסיס להגדרה שלה, ולמצב זה קוראים *הנחת המבוקש*. כמו כן לא צריך איבר שלישי כדי להבחין בין שניי אברי A ,ומצב זה נכון לכל תכולה (או אי-תכולה, במקרה של הקבוצה-הריקה) של קבוצה כלשהי. לגבי זהות ושיוויון, זהו ויכוח משני שאינו מעלה ואינו מוריד מאי-נחיצותה של ה-axiom of extensionality ואם שיוויון וזהות הם מילים נרדפות למושג אחד במתמטיקה-המודרנית, אז ניתן להבין מיד עת כמה שפה זו אינה מדוייקת, כי ברור לחלוטין שזהות חלה גם על ההרכב וגם על הקרדינל של קבוצה, בעוד ששיווין חל רק ואך ורק על הקרדינל. הבחנה זו היא קריטית לקיומה של שפה מדוייקת. |
|
||||
|
||||
דורון: לגבי זהות ושיוויון, זהו ויכוח משני שאינו מעלה ואינו מוריד מאי-נחיצותה של ה-axiom of extensionality ואם שיוויון וזהות הם מילים נרדפות למושג אחד במתמטיקה-המודרנית, אז ניתן להבין מיד עת כמה שפה זו אינה מדוייקת, כי ברור לחלוטין שזהות חלה גם על ההרכב וגם על הקרדינל של קבוצה, בעוד ששיווין חל רק ואך ורק על הקרדינל. אני: חושב אני שהבנתי סוף סוף את מה שאתה לא מבין. במתמתיקה מותר לשים סימן שוויון גם בין אוביקטים שאינם מספרים, כגון קבוצות (למעשה כל האובייקטים הם קבוצות). דורון: .... ולמצב זה קוראים *הנחת המבוקש*. אני: נכון שהאקסיומה הזו מאוד טבעית, וברור שבאופן טבעי אתה חושב שקבוצה אמורה להקבע על ידי התכולה שלה. עם זאת זה לא אומר שלא צריך להוסיף אותה לאקסיומות, או שהיא "מניחה את המבוקש" (את זה אני פשוט לא מבין - זו אקסיומה, לא טענה, היא לא "מבקשת" דבר). עכשיו כשאתה מבין מה זה שוויון תוכל להבין שבדוגמא שנתתי אקסיומה זו אינה מתקיימת. |
|
||||
|
||||
"חושב אני שהבנתי סוף סוף את מה שאתה לא מבין. במתמתיקה מותר לשים סימן שוויון גם בין אוביקטים שאינם מספרים, כגון קבוצות (למעשה כל האובייקטים הם קבוצות)." כפי שאני טוען, יש להבחין קטגורית בין זהות שבה אנו עוסקים באותו אלמנט עצמו, לבין שיוויון, שבו אנו עוסקים בשניי אלמנטים שונים. אם a הוא {1,2,3} ו-b הוא {4,5,6} אז אין ביניהם זהות אך יש ביניהם שיוויון בערכו של הקרדינל שלהם, שזוהי תכונה חלקית של a ו-b . שתיי קבוצות הן זהות (הן למעשה אותו אלמנט) אם ורק אם יש התאמה מוחלטת בין תכונותיהן. |
|
||||
|
||||
האייל הלמוני מתגובה קודמת הוא אני. |
|
||||
|
||||
דורון: שתיי קבוצות הן זהות (הן למעשה אותו אלמנט) אם ורק אם יש התאמה מוחלטת בין תכונותיהן. אני: שתי קבוצות הן שוות (הן למעשה אותו אלמנט) אם ורק אם יש התאמה מוחלטת בין תכונותיהן. דורון: אם a הוא {1,2,3} ו-b הוא {4,5,6} אז אין ביניהם זהות אך יש ביניהם שיוויון בערכו של הקרדינל שלהם, שזוהי תכונה חלקית של a ו-b . אני: ולכן הם לא שווים! |
|
||||
|
||||
"ולכן הם לא שווים!" הבדל בין זהות לשיוויון באריתמטיקה: 2 זהה ל-2 2 שווה (אך אינו זהה) ל- 1+1 |
|
||||
|
||||
"עכשיו כשאתה מבין מה זה שוויון תוכל להבין שבדוגמא שנתתי אקסיומה זו אינה מתקיימת." שוב: The axiom of extensionality: בשורה תחתונה, האקסיומה הנ"ל קובעת שייחודה של קבוצה נקבעת עפ"י איבריה, אבל איבריה של קבוצה (לפי ZF) תמיד מובחנים זה מזה ללא תלות בקיומה של האקסיומה, ולכן יכולת ההבחנה המוגדרת ע"י האקסיומה, נובעת מיחודיות איבריה ולא מקיומה של האקסיומה, ולכן אקסיומה זו מגדירה ייחודיות על ידי שימוש בייחודיות.
Given any set A and any set B, A is equal to B if and only if, given any set C, C is a member of A if and only if C is a member of B. what the axiom is really saying is that two sets are equal iff they have precisely the same members. The essence of this is: A set is determined uniquely by its members. |
|
||||
|
||||
על מה אני מסתמכים (ב-ZF) כאשר אנו טוענים כי {a,a,b}={a,b} ? |
|
||||
|
||||
לאקסיומה הזו יש שם בעברית: אקסיומת ההקפיות. ועליה אנו מסתמכים, כי ההגדרה של {a,a,b} היא על ידי יחס השייכות. כלומר אנו אומרים שקבוצה זו מכילה את a, בנוסף היא מכילה את a ובנוסף את b, ואלו כל איבריה. כלומר אנו אומרים שאיבריה הם a ו b בלבד. בעצם אנו משתמשים באקסיומת ההקפיות כבר כאן, כי אחרת מי אמר שיש רק קבוצה אחת כזו? כלומר כבר בעצם השאלה שלך השתמשת בהקפיות. (הנה - הנחת המבוקש - אצלך). וראה איזה פלא: אלו גם איבריה של {a,b}. לכן הן שוות. בלי האקסיומה הזו תהיה לך בעיה להראות ש {a,b} בכלל יחידה. |
|
||||
|
||||
"כלומר אנו אומרים שאיבריה הם a ו b בלבד." זאת אומרת, שאנו משתמשים באקסיומה זו כדי לקבוע את היחודיות של קבוצה עפ"י איבריה, אך לשם כך אנו משמיטים איברים יתירים ללא שימוש באקסיומה אלא ע"י היכולת המובנית שלנו להבחין בין זהה לשונה, ובכך אנו "מכשירים את הקרקע" כדי לקבוע את היחודיות של קבוצה עפ"י איבריה, וזאת ללא השימוש באקסיומת ההיקפיות. "הכשרת קרקע" זו של קביעת יחודיות של קבוצה עפ"י איבריה ללא אקסיומת ההיקפיות, הופכת את האקסיומה הנ"ל למיותרת, ואם אנו מתעקשים להשתמש בה, הרי שאנו קובעים ייחודיות ע"י שימוש בייחודיות מותנית מראש. |
|
||||
|
||||
דורון: זאת אומרת, שאנו משתמשים באקסיומה זו כדי לקבוע את היחודיות של קבוצה עפ"י איבריה, אך לשם כך אנו משמיטים איברים יתירים ללא שימוש באקסיומה אלא ע"י היכולת המובנית שלנו להבחין בין זהה לשונה, ובכך אנו "מכשירים את הקרקע" כדי לקבוע את היחודיות של קבוצה עפ"י איבריה, וזאת ללא השימוש באקסיומת ההיקפיות. אני: 1. בעצם ההגדרה של {a,b} יש שימוש באקסיומת ההקפיות. 2. לא מבין מה הכוונה "מכשירים את הקרקע". 3. ההגדרה של זהות ושוני בין איברים לא קשורה לאקסיומת ההקפיות. דורון: "הכשרת קרקע" זו של קביעת יחודיות של קבוצה עפ"י איבריה ללא אקסיומת ההיקפיות, הופכת את האקסיומה הנ"ל למיותרת, ואם אנו מתעקשים להשתמש בה, הרי שאנו קובעים ייחודיות ע"י שימוש בייחודיות מותנית מראש. אני: אבל הראיתי לך שקיימים מודלים שאינם מקיימים אקסיומה זו. למה אתה מתעקש? |
|
||||
|
||||
למה *אתה* מתעקש? למה? זה כיף? אתה לומד משהו? אתה מאמין שתזכה לקבל איזה "ואו אתה צודק" אי-פעם? יאלה, חאלאס. ניסיתם וניסיתם וניסיתם וניסיתם וניסיתם וניסיתם, ולא הולך. בלוק. אז די, תעזרו לו להיגמל מהמקום הזה. |
|
||||
|
||||
אז ככה: לומד משהו? כן אני לומד המון. מה בדיוק אני לומד? אני מעדיף לא לפרט כאן, בכל אופן זה לא כל כך קשור למתמטיקה כמו שזה קשור לפסיכולוגיה. לקבל "ואו"? משום מה עדיין יש בי את התקווה הזו. אבל כנראה שאתה צודק. אני באמת קרוב לכניעה. פשוט אין לי יותר מדי מה לעשות עכשיו. |
|
||||
|
||||
"אבל הראיתי לך שקיימים מודלים שאינם מקיימים אקסיומה זו. למה אתה מתעקש?" סביר להניח כי התעקשותי נובעת ממסלול חשיבה שאינו קשור למסלול החשיבה שלך. אנא קרא את תגובה 341176 והסבר נא לי: 1. אם אתה אומר שאקסיומות ZF אינן מגדירות דבר, אז למה אתה מתכוון כאשר אתה כותב: "בעצם *ההגדרה* של {a,b} יש שימוש באקסיומת ההקפיות" ? 2.כיצד ייתכן הדבר שהמושגים זהות ושוני אינן קשורות לאקסיומת ההיקפיות, אם אקסיומה זו קובעת את ייחודה של קבוצה עפ"י איבריה. 3. הסבר נא מדוע {{1},{2}} אינה מקיימת את אקסיומת היחידות? תודדה. |
|
||||
|
||||
תיקון להודעה קודמת: 3. הסבר נא מדוע {{1},{2}} אינה מקיימת את אקסיומת ההיקפיות? תודה. |
|
||||
|
||||
תוספת לתיקון: 3. הסבר נא מדוע {{1},{2}} אינה מקיימת את אקסיומת ההיקפיות? כך בחשבון כי כתבת, ואני מצטט "בעצם *ההגדרה* של {a,b} יש שימוש באקסיומת ההקפיות" {a,b} הינה צורה כללית המייצגת בין השאר את {{1},{2}}, אז הסבר נא איך {{1},{2}} אינה מקיימת את אקסיומת ההיקפיות וגם מבוססת על הגדרה המשתמשת באקסיומת ההקפיות ? |
|
||||
|
||||
נראה לי שכאן הגענו למבוי קצת סתום. אני לא מבין את השאלה שלך. מה שאני כן מבין הוא שאתה צריך ללמוד קורס בסיסי בלוגיקה מתמטית כדי להבין שהשאלה שלך חסרת הגיון. אין שום סתירה במה שאמרת. משתמשים באקסיומה כדי לבנות מודל שבו האקסיומה הזו אינה מתקיימת. אין בכך שום סתירה. |
|
||||
|
||||
"נראה לי שכאן הגענו למבוי קצת סתום. אני לא מבין את השאלה שלך. מה שאני כן מבין הוא שאתה צריך ללמוד קורס בסיסי בלוגיקה מתמטית כדי להבין שהשאלה שלך חסרת הגיון." אח של סמיילי, אם אתה לא מבין את השאלה, אז כיצד אתה מסיק מסקנות ונותן תשובה בסגנון "...השאלה שלך חסרת הגיון" ? אינך חושב כי יש סתירה בסיסית במתן תשובה קטגורית לשאלה שאינך מבין? אם זו דרכך, אז אין הרבה טעם לדון איתך בעיניני שפה ולוגיקה. שאלותי אליך הן פשוטות בתכלית ומבוססות על סתירות פנימיות בתשובותיך, שתגובתך האחרונה לא סיפקה תשובות להן. אכתוב מחדש בתגובה זו את כל הניסוחים שמצאתי כי הן סותרות אחת את השניה, והפעם תנסה לענות ולפרש את היתכנותן. נתחיל: "רק אומרת משהו" בשפתך, זהה ל-"מגדירה את התכונות של" בשפתי, ולכן אקסיומת ההיקפיות מגדירה (משורש ג.ד.ר שמשמעותו: קביעה קטגורית חד-משמעית של תכונות הקיום של אלמנט נתון) את התכונות לייחודיות קבוצה עפ"י איבריה ע"י שימוש בייחודיות מותנית מראש הנובעת מיכולת מובנית שלנו להבחין בין זהה לשונה, אשר איננה תלויה ב-"אמירת המשהו" של האקסיומה. לדוגמא, אם נתונים {a,a,b} ו- {a,b}, אז אנו משתמשים באקסיומת ההיקפיות כדי לקבוע את היחודיות של קבוצה עפ"י איבריה, אך לשם כך אנו משמיטים איברים יתירים ללא השימוש באקסיומה אלא ע"י היכולת המובנית שלנו להבחין בין זהה לשונה, ובכך אנו "מכשירים את הקרקע" כדי לקבוע את היחודיות של קבוצה עפ"י איבריה, וזאת ללא השימוש באקסיומת ההיקפיות. "הכשרת קרקע" זו של קביעת יחודיות של קבוצה עפ"י איבריה ללא אקסיומת ההיקפיות, הופכת את האקסיומה הנ"ל למיותרת, ואם אנו מתעקשים להשתמש בה, הרי שאנו קובעים ייחודיות ע"י שימוש בייחודיות מותנית מראש. שייכות מתקיימת אם ורק אם אנו משתמשים ביכולת מובנית שלנו להבחין בין זהה לשונה, ואז ורק אז אנו יכולים לשייך את תוצרי הבחנה זו לקבוצות, כאשר זהות ואי-זהות משמשות במשולב כאמצעי לשיוך, ללא שום תלות בקיומה או אי-קיומה של אקסיומת ההיקפיות. עתה נשוב לניסוחים הסותרים שלך במהלך הדיון ביננו, ואבקש את הבהרותיך: 1.אם אתה אומר שאקסיומות ZF אינן מגדירות דבר, אז למה אתה מתכוון כאשר אתה כותב: "בעצם *ההגדרה* של {a,b} יש שימוש באקסיומת ההקפיות" ? הריי במו פיך טענת כי אין להשתמש במילה "הגדרה" בקשר לאקסיומות ZF, אז מדוע אתה משתמש במילה זו בקשר לשימוש באקסיומת ההיקפיות? 2.אתה טוען:"ההגדרה של זהות ושוני בין איברים לא קשורה לאקסיומת ההקפיות." היות ואקסיומת ההיקפיות קובעת את ייחודה של קבוצה עפ"י איבריה, אז הסבר נא כיצד ייתכן הדבר שהמושגים זהות ושוני אינן קשורות לאקסיומת ההיקפיות? במילים אחרות הדגם נא כיצד אקסיומה זו פועלת ללא כל זיקה למושגים זהות ושוני. 3. הסבר נא מדוע {{1},{2}} אינה מקיימת את אקסיומת ההיקפיות? כך בחשבון כי כתבת, ואני מצטט "בעצם *ההגדרה* של {a,b} יש שימוש באקסיומת ההקפיות" {a,b} הינה צורה כללית המייצגת בין השאר את {{1},{2}}, אז הסבר נא איך {{1},{2}} אינה מקיימת את אקסיומת ההיקפיות *וגם* מבוססת (כדבריך) על *הגדרה* המשתמשת באקסיומת ההקפיות ? |
|
||||
|
||||
תשובות: 1. האקסיומות לא מגדירות דבר. זה לא אומר שאי אפשר להגדיר שום דבר. גם כשאנו אומרים "להגדיר" אנחנו מתכוונים שאת הנוסחה הנ"ל רק איבר אחד מקיים. תנסה לחשוב מה הנוסחה המגדירה את {a,b}. למה רק איבר אחד מקיים נוסחה זו? בגלל ההקפיות! 2. או! סוף סוף נגענו בנקודה. זהות ושוני בין איברים במודל כלשהו של תורה מסדר ראשון כלשהו פשוט מוגדרים כזהות ושוני. 2 איברים הם שונים אםם הם אינם שווים. בהנתן מודל כלשהו לתורה, 2 ביטויים הם שווים במודל אםם הם אותו איבר. למשל 1+1 ו 2 מתפרשים כאותו איבר ב N - מודל של המספרים הטבעיים, ולכן הם שווים. (למרות שכמחרוזת תווים הם שונים - זהו ההבדל בין הסינטקס לבין הסמנטיקה). אקסיומת ההקפיות רק אומרת מהו הקשר בין השוויון לבין השייכות. לא יותר מזה. 3. אני לא יודע מה זה אקסיומת היחידות. אנחנו מדברים על אקסיומת ההקפיות. והנה, למרות שאין אף איבר בעולם (שהוא כרגע {{1},{2}} כלומר יש בו 2 איברים) שמבדיל ביניהם (כלומר שייך לאחד ולא לשני), {1} שונה מ {2} (למעשה שניהם יחשבו כקבוצה ריקה - והנה לך דוגמא למה גם האקסיומה ש"מגדירה" את הקבוצה הריקה לא מגדירה אותה כלל - כי יש שתיים כאלו כאן). |
|
||||
|
||||
"אנחנו מדברים על אקסיומת ההקפיות. והנה, למרות שאין אף איבר בעולם (שהוא כרגע {{1},{2}} כלומר יש בו 2 איברים) שמבדיל ביניהם (כלומר שייך לאחד ולא לשני), {1} שונה מ {2} (למעשה שניהם יחשבו כקבוצה ריקה" The axiom of extensionality: מכיוון שאקסיומה זו קובעת את הייחודיות של קבוצה ע"י איבריה, ניתן לנסח אותה גם בדרך הבאה:Given any set A and any set B, A is equal to B if and only if, given any set C, C is a member of A if and only if C is a member of B. what the axiom is really saying is that two sets are equal iff they have precisely the same members. The essence of this is: A set is determined uniquely by its members. A ו- B הן קבוצות שונות אם ורק אם קיימת קבוצה C ב-A ולא ב-B , או ב-B ולא ב-A . אם אנו בוחנים את יכולתה של אקסיומת ההיקפיות לקבוע את היחודיות בין {1} ל- {2}, אז (אם הבנתי את דבריך) אתה טוען כי היות ו-C אינו משתנה חופשי הריי שהוא חייב להיות שונה מ |{{}}|(=1) או שונה מ- |{{{}},{}}|(=2), אך היות וב-{1} ו-{2} אין יותר מאיבר אחד בכל קבוצה, הריי ש-C אינה יכול הלהתקיים כלל (אפילו לא כקבוצה ריקה), ולכן אקסיומת ההיקפיות תקיפה רק אם A או B הן קבוצות זהות או שיש הפרש של לפחות איבר אחד בין A ל-B המקיים את C. בזאת אתה מחזק את דברי, שבהם אני טוען כי אקסיומת ההיקפיות אינה מבצעת את מלאכתה נאמנה "בכל תנאי מזג האוויר" ואיננה מסוגלת לקבוע את הייחודיות של קבוצה לפי איבריה, ללא תנאי. |
|
||||
|
||||
דורון: אם הבנתי את דבריך אני: לא הבנת את דברי. דורון: אתה טוען כי היות ו-C אינו משתנה חופשי הריי שהוא חייב להיות שונה מ |{{}}|(=1) או שונה מ- |{{{}},{}}|(=2), אך היות וב-{1} ו-{2} אין יותר מאיבר אחד בכל קבוצה, הריי ש-C אינה יכול הלהתקיים כלל (אפילו לא כקבוצה ריקה), ולכן אקסיומת ההיקפיות תקיפה רק אם A או B הן קבוצות זהות או שיש הפרש של לפחות איבר אחד בין A ל-B המקיים את C. אני: אני לא טוען שום דבר כזה. בעולם יש רק 2 איברים. אף אחד מהם לא שייך ל {1}, ואף אחד מהם לא שייך ל {2}. לכן אם אקסיומת ההקפיות היתה נכונה, 2 הקבוצות הנ"ל היו שוות. אבל הן לא. |
|
||||
|
||||
"בעולם יש רק 2 איברים. אף אחד מהם לא שייך ל {1}, ואף אחד מהם לא שייך ל {2}. " אינני מבין את האופן שבו אתה משתמש במושג השייכות במקרה הנדון. על איזה 2 איברים אתה מדבר, שאף אחד מהם לא שייך ל-{1} או ל-{2}? |
|
||||
|
||||
האיברים הם: {1} - זה האיבר הראשון, ו {2} - זה האיבר השני. יחס השייכות הוא אותו יחס שייכות שאתה מכיר, כלומר זה שהם יורשים. עכשיו, האם {1} שייך ל {2}? לא. האם {2} שייך ל {2}? לא. לכן שניהם יחשבו כקבוצה ריקה בעולם הזה, ובפרט אקסיומת ההקפיות לא נכונה, משום ש {1} שונה מ {2}. |
|
||||
|
||||
אקסיומת ההיקפיות אמורה לקבוע את היחודיות של קבוצה עפ"י איבריה. כדי לדעת ש-{1} לא שייך ל-{2} או ש-{2} לא שייך ל-{2}, אתה אמור להבחין בין {1} ל-{2} ובין 1 ו-2 הקיימים ב-{{1},{2}}. לפי דבריך, אתה עושה זאת ללא אקסיומת ההיקפיות, מכיוון שלדבריך אקסיומה זו אינה תקיפה ב-{{1},{2}}. בכך אתה מחזק את טענתי, הגורסת כי אנו מבחינים ביחודיות הקיום של קבוצות ללא כל תלות בקיומה או באי-קיומה של אקסיומת ההיקפיות, ולכן אקסיומה זו קובעת יחודיות תוך הסתמכות על יכולתנו להבחין ביחודיות, ללא כל תלות באקסיומה. כתוצאה מאי-תלות זו, מסתמכת אקסיומת ההיקפיות על תכונה מובנית שלנו להבחין ביחודיות, כדי לקבוע את היחודיות של קבוצה. היות וגם התכונה המובנית להבחין ביחודיות וגם האקסיומה, מקור שתייהן בנו, הרי שעל-ידי שימוש באקסיומה אנו משתמשים בלוגיקה מעגלית המניחה את המבוקש. ללא קיום התכונה_המובנית_להבחין_ביחודיות הטמונה בנו, לא נוכל להבחין ביחודיות קבוצה עפ"י איבריה, עם או בלי האקסיומה, ולכן אקסיומה זו מיותרת בתכלית. |
|
||||
|
||||
ההבחנה בין {1} ל-{2} נעשית בעולם הגדול, ושם כן מתקיימת אקסיומת ההקפיות. בעולם הקטן לעומת זאת, אקסיומה זו אינה מתקיימת, ושתי הקבוצות יחשבו ריקות. |
|
||||
|
||||
אך היות ו-{1} ו-{2} אינן ריקות, אקסיומת ההיקפיות יוצרת אין מיש ובכך היא כופה מצב מעוות ושיקרי על מציאות פשוטה ואלגנטית. |
חזרה לעמוד הראשי |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |