בתשובה לדורון שדמי, 26/09/05 9:32
טענו בחטים והודה לו בשקדי מרק 332642
טענו בפתיתים והודה לו בשקדי מרק 332649
טענו בפתיתים והודה לו בשקדי מרק 332730
לא יכולתם לדחות קצת את הדיון הזה? קצת אכזרי לנהל אותו בדיוק כשסביבי עולים ניחוחות של אוכל מדהים במיוחד, ואין לי מושג מנין הם ואני לא מוזמנת...
טענו בחטים והודה לו בשקדי מרק 332692
בבקשה עוזי, הבמה לרשותך,

הדגם נא לנו את המצב הפשוט ביותר האפשרי של מושג הקבוצה ומושג השייכות.
טענו בחטים והודה לו בשקדי מרק 332695
תגובה 332642
אוי ואבוי, הם מתרבים 332706
אוי ואבוי, הם מתרבים 332756
אני מניח שאתה מתכוון לשקדי המרק.
אוי ואבוי, הם מתרבים 332769
ומה רע בהתרבותם של שקדי המרק?
טענו בחטים והודה לו בשקדי מרק 332811
אני לא יודע לדרג מצבים לפי פשטות, ובוודאי שלא להוכיח שמצב מסויים הוא כל-כך פשוט עד שאי-אפשר להיות פשוט יותר.

בכל אופן, הקבוצה הריקה (שאפשר לסמן כ- {}) נראית לי דוגמא מוצלחת לקבוצה (אם כי אני לא בטוח שאני מבין למה הכוונה ב"מושג הקבוצה"). הקבוצה הריקה שייכת לקבוצה {{}}, ומצד שני לה בעצמה אין איברים בכלל.

(חשבתי שהמטרה היתה לפענח את סימן השוויון מלפני כמה תגובות).
טענו בחטים והודה לו בשקדי מרק 332978
בנושא זה, אני מבחין בין שתיי מערכות מושגים הופכיים:

א)פשטות/מורכבות

ב)פשטנות/מסובכות

(א) היא היחס שכדאי לשאוף אליו והוא: פשטות מירבית המשמשת כמקור מכונן למורכבות מירבית, כאשר יחס הופכי זה הוא בר העצמה.

יחס (ב) הוא הדבר שיש להמנע ממנו.
מתחדישיו של מחייה השפה העברית... 333020
לדעתי, "פשטני" היא מילה נרדפת ל"רדוד" או "שטחי", כלומר ההפך של "עמוק".
"מסובכות" (?) נשמעת לי כמו מילה נרדפת ל"מורכבות".
מתחדישיו של מחייה השפה העברית... 333033
מסובכות הינה תוצר של אוסף פתרונות פשטניים, אשר אינם מקושרים זה לזה באופן אלגנטי.

מורכבות הינה תוצר של אוסף פתרונות פשוטים המקושרים ביניהם באופן אלגנטי.
מתחדישיו של מחייה השפה העברית... 333037
יותר מכך, מורכבות הינה תוצר של אוסף פתרונות פשוטים, כאשר פתרון פשוט הוא המינימום ההכרחי לקיומו של פתרון.

מינימום הכרחי נמדד עפ''י דרגת הסימטריה הפנימית המכוננת אותו, ולכן מערכת מורכת הינה ביטויי לשילובן של סימטריות שונות תוך שאיפה להגשמתה של סימטריה מכוננת המתקיימת בבסיסם.

מערכות מסובכות אינן מכוננות סימטריה, ואינן שואפות לבטא פשטות אלגנטית הנובעת מקשרים סימטריים עמוקים.
מתחדישיו של מחייה השפה העברית... 333126
תודה על הדגמה מצוינת למושג ''מסובכות''.
מתחדישיו של מחייה השפה העברית... 334016
תודה לעצמך.
טענו בחטים והודה לו בשקדי מרק 332982
עוזי תאר נא את אי-ידיעתך תוך התייחסות ל:

"אם אתה עוסק במושגים קבוצה ושייכות, הרי שהמינימום ההכרחי לקיום בפועל של קבוצה, הוא לא פחות מאשר הקבוצה הריקה {}, ושייכות היא לא פחות מאשר {} המקוננת ב-{} והמקיימת את {{}} וכו'."

אנא הסבר לנו את קשייך עם הנ"ל.

תודה.
טענו בחטים והודה לו בשקדי מרק 333051
אני לא בטוח שאני יודע לתאר את אי-ידיעתי. נדמה לי שזה קינון של אי ידיעה בתוך אי ידיעה, אבל מי יודע.

אני מתרגם את הטענה במרכאות לטענה שאני מבין: "יש רק קבוצה אחת המוכלת בכל קבוצה אחרת, והיא הקבוצה הריקה. הקבוצה הלא-ריקה שסכום העוצמות של איבריה הוא הקטן ביותר, היא {{}}".
אם יש לזה משמעויות פילוסופיות או אחרות, אני מפספס אותן לחלוטין.
טענו בחטים והודה לו בשקדי מרק 333100
תודה לך עוזי על תשובתך.

האם לדעתך יכולה להתקיים קבוצה אלמנטרית יותר מאשר הקבוצה-הריקה?
טענו בחטים והודה לו בשקדי מרק 333210
הייתי יכול לענות לו הייתי יודע למה אתה מתכוון ב''אלמנטרי''.
טענו בחטים והודה לו בשקדי מרק 333267
אלמנטרי:

ישות יסודית, שאי-קיומה מונע את קיומם של אלמנטים המורכבים ממנה (תרתי משמע).

אם {} לא קיימת, אז {{}} לא קיימת.

לעומת זאת אם {{}} לא קיימת , {} קיימת.

לכן {} הינה קבוצה אלמנטרית ואילו {{}} הינ קבוצה מורכבת.
רגע 333269
ואני חשבתי ש"כל מושג צריך להיות מובן עד תומו *טרם* השימוש בו"‏1, אז איך אתה מגדיר אלמנטרי על ידי השימוש באלמנטרי?

1 תגובה 329486
רגע 333285
אלמנטרי:

ישות יסודית, שאי-קיומה מונע את קיומם של אלמנטים המורכבים ממנה (תרתי משמע).

עכשיו הסבר נא איפה אתה רואה שימוש במושג אלמנטרי כדי להגדיר אלמנטרי?
רגע 333287
בוא ונחדד עוד יותר את ההסבר:

אלמנטרי (הגדרה):

ישות יסודית, שאי-קיומה מונע את קיומם של אלמנטים המורכבים ממנה (תרתי משמע).

ועכשיו דוגמאות והסברים:

דוגמא 1:

אם {} לא קיימת, אז {{}} בהכרח לא קיימת.

הסבר לדוגמא 1:

אם {} אינה קיימת ב-{{}} אז {{}} אינו אלא {}, אך {} לא קיימת לכן {{}} אינה יכולה להתקיים ללא {} כאלמנט יסוד שלה.

דוגמא 2:

אם {{}} לא קיימת , לא נובע בהכרח ש-{} לא קיימת.

הסבר לדוגמא 2:

אם אנו מסירים את הסוגריים החיצוניים של {{}}, {} קיימת, ולכן קיום {} אינו תלוי בקיום {{}}.

מסקנה:

{} הינה קבוצה אלמנטרית ואילו {{}} הינה קבוצה מורכבת.
רגע 333474
כלומר A יותר אלמנטרית מ- B אם ורק אם A מוכלת ב- B (אפשר גם להגדיר עם שייכות במקום הכלה), למה להמציא מושג חדש?
רגע 333485
זה קצת יותר מסובך.

הצעה לדורון (הגדרה מסודרת ל"אלמנטרי"). ראשית, נאמר שקבוצה x היא "מרכיב" של קבוצה y, אם קיימת סדרה **סופית** של קבוצות y1,y2,...,yn, כך ש- y1 איבר של y, ו- y2 איבר של y1, ו- y3 איבר של y2 וכו', עד ל- yn שהוא איבר של (y(n-1 ו- x שהוא איבר של yn.
למשל, כל איבר של קבוצה הוא "מרכיב" שלה, וגם כל האיברים של האיברים, וכן הלאה.

(לתהליך הזה שבו היחס "מרכיב" נולד מתוך היחס "שייך" קוראים "סגור טרנזיטיבי" (בחולם)).

כעת, דורון מגדיר "קבוצה אלמנטרית" בתור "קבוצה שהיא מרכיב בכל קבוצה לא ריקה" (כדאי להרהר לרגע מה זה אומר).

בתגובה 333100 הוא שואל (בעצם) שתי שאלות:
1. האם הקבוצה הריקה היא אלמנטרית?
2. האם יש עוד קבוצות אלמנטריות?

לשאלה השניה, כמובן שלא: המרכיב היחיד של {{}} הוא הקבוצה הריקה.

לגבי השאלה הראשונה, נדמה לי שהתשובה שלילית, אבל בשלב הזה קצת מוקדם לעלות עם חד-אופן על חבל מתוח.
רגע 333501
מה דעתך על ההגדרה הזו למרכיב: x הוא מרכיב של y אם הוא איבר של y או איבר של מרכיב של y.

בפרט, האם ההגדרה הזו "חזקה יותר" (כלומר, מאפשרת סדרה לא סופית) ואם כן, האם זה רע/לא תואם את מה שדורון מדבר עליו?

בקשר ל-‏1, תוכל להסביר את כיוון המחשבה שלך? אם בונים בצורה פורמלית את כל הקבוצות בעזרת הקבוצה הריקה, נראה לי שהיא כן תהיה מרכיב בכל קבוצה.
רגע 333504
(הדגמה לזה שמתמטיקאים מתחמקים מעיסוק בהגדרות עקרוניות)

זו לא הגדרה מוצלחת, כי היא רקורסיבית (אתה מגדיר "מרכיב" במונחי אותו מושג). בהקשרים מסויימים זה רעיון מצוין‏1, אבל בתור כלל אצבע, הייתי אומר שאפשר להשתמש בהגדרות כאלה רק כשברור שאפשר להסתדר גם בלעדיהן; מצד שני, אם *אפשר* להסתדר בלעדיהן, אז הגדרות רקורסיביות הן כלי מאד מוצלח ואלגנטי.

בעצם אתה לא מגדיר את המושג "מרכיב" (רקורסיביות, כאמור), אלא נותן קריטריון, אילו יחסים נחשבים ל"יחסי מרכיבות": "יחס מרכיבות הוא יחס שבו x מתייחס ל- y אם ורק אם הוא איבר של y, או מתייחס לאיבר של y" (כאן אין שום רקורסיביות, כי היחס עומד "מחוץ" להגדרה). כעת אפשר להוכיח שחיתוך של אוסף יחסי מרכיבות גם הוא יחס מרכיבות, ואז אפשר להתבונן ביחס המרכיבות הקטן ביותר. הפלא ופלא - זה היחס "מרכיב" שאני הגדרתי...

1 למשל: הדוגמא הראשונה שהתגלתה לחבורה (נוצרת סופית) עם גידול‏2 שאיננו פולינומיאלי וגם איננו אקספוננציאלי, נראית בערך כך: זוהי החבורה שנוצרת על-ידי האיברים a,b,c,d, כאשר
a=(1,b), b=(c,1), c=(d,d), d=(1,a).

2 חבורה היא הרי אוסף של מכפלות (תמיד סופיות) של ה"יוצרים" שלה, אלא שבדרך כלל יש כפילויות, למשל abab=baba. ב"גידול" הכוונה היא לשאלה כמה מהר גדלה הפונקציה (f(n שסופרת כמה איברים שונים יש מאורך n.
רגע 333776
לא הבנתי את כלל האצבע. יש כל מיני סדרות שמוגדרות רק ע"י הגדרה רקורסיבית. למשל:

A(n) = 3A(n-1) + 1 .... for A(n-1) odd
A(n) = 1/2 * A(n-1) .... for A(n-1) even

וכאן לא ידועה נוסחא לא רקורסיבית לאיבר ה n . ונניח שיצליחו להוכיח שבסדרה הזו (או סדרה דומה) לא קיימת נוסחא לא רקורסיבית לאיבר ה n. למה זה בעיה?
רגע 333821
אתה מגדיר את (A(n לפי (A(n-1 - עם זה אין שום בעיה. (דיברתי על הגדרה של מושג או של אובייקט).

(דוגמא להגדרה רקורסיבית: "A הוא המספר השלם הקטן ביותר שגדול מ- A/2+3").
רגע 333883
גם בדוגמא שלך, לא הבנתי למה הרקורסיביות היא בעייתית (אני מבין שזה רק כלל אצבע, אבל בכל זאת). נדמה לי שאפשר לנסח את ההגדרה הרקורסיבית הזו בתור שני אי שיוויונים - ואני לא רואה שום דבר בעייתי במערכת אי שיוויונים, אפילו אם אותו משתנה מופיע בשני האגפים.
רגע 333885
מצויין. למה שווה A?
רגע 333901
7, לא?

אני לא כל כך מצליח לראות את הבעיה שבהגדרה הרקורסיבית שלי שהתחילה את הכל, רק בגלל שיש לה הפניה עצמית. הרי איך "משתמשים" בה? לא אומרים על דברים "זה מרכיב כי בא לי", אלא מסתכלים על הדברים שאנחנו בטוחים במאה אחוזים שהם מרכיב: כל האיברים של y. אחרי שיש לנו את המרכיבים ה"בטוחים" הללו אנחנו בודקים אילו עוד מרכיבים אנחנו מכירים - ועכשיו אנחנו יכולים לקחת את כל האיברים של המרכיבים ה"בטוחים", וכן הלאה וכן הלאה.

להבדיל אלף אלפי הבדלות, אם אני זוכר נכון גם ההגדרה של קונווי למספר היא רקורסיבית, וגם הוא מתחיל את הבניה מהמקרה היחיד שבו הוא יודע שמשהו הוא מספר על בטוח - על ידי שימוש בשתי קבוצות ריקות של מספרים.
רגע 333906
אולי 8? (זה באמת המספר השלם הקטן ביותר שגדול מ- 8/2+3).

השיפוץ שאתה מציע עכשיו הוא בעצם להגדיר סדרה של יחסים (שייך, שייך לאיבר, שייך לאיבר של איבר, ...) ולהגדיר את "מרכיב" בתור האיחוד שלהם. זה בסדר, ו*לכן* במקרה הזה מותר להשתמש ב"הגדרה" שהצעת. היא באמת יותר אלגנטית (ושוב, אלגנטיות זה קריטריון מצוין, בתנאי שעומדים על קרקע יציבה).

גם אצל קונווי, ההגדרה של משחק בתור זוג סדור של קבוצות של משחקים היא בחצי-קריצה. הוא לא היה משתמש בה אלמלא הפיגום של הסודרים שמאפשר להגדיר את כל המשחקים באינדוקציה טרנספיניטית, כאשר משחק מדור i+1 מוגדר בתור זוג סדור של קבוצות מדור קודם (עם הגדרה מתאימה לסודרים שאינם עוקבים). גם כאן, המושג "משחק" אינו בא לעולם עד שהגדרנו "משחק מדור 0", "משחק מדור 1", וכן הלאה. "משחק" *מוגדר* בתור "משחק מאיזשהו דור".
רגע 333908
7/2+3 זה לא שש וחצי, שקטן משבע?

שאר הדברים שלך מקובלים עלי, אבל איפה יש הגדרה שהיא רקורסיבית "ממש", בלי בסיס? הרי כבר בכיתה א' מלמדים אותנו שרקורסיה חייבת לבוא עם בסיס.
רגע 333916
בדיוק: 7 הוא המספר השלם הקטן ביותר שגדול מ7/2+3.

שים לב גם שאתה שאלת את עוזי (בהקשר של ההגדרה הרקורסיבית של קונוויי) על מספרים והוא ענה לך על משחקים.
רגע 333921
זה בסדר, כי אצל קונווי ההגדרה של ''מספר'' היא מקרה פרטי של ''משחק'', שמוגדר כמו מספר רק עם פחות מגבלות. לך תבין.
רגע 333977
זהו, שאין. ''הגדרה רקורסיבית'' זה אוקסימורון, אלא אם היא בת-תיקון, שאז זה קיצור ל''תאור אלגנטי שבא במקום ההגדרה (אותה אפשר להבין מתוך ההקשר)''.
רגע 334000
רקורסיה, אם לא נקבע אחרת, מתחילה מפשטות מירבית ופשטות מירבית
מוסברת בקצרה בתגובה 333996
רגע 333918
לא הבנתי למה זה רלוונטי מהו A.

אם הייתי מגדיר את A בתור A=A+1 לא היה שום A שעונה על המשוואה - ועדיין אני לא רואה כאן מה הבעיה.
רגע 333925
הבעיה היא שהכביכול-הגדרה הזו משאירה אותנו בחוסר ודאות לגבי A שאותו היא מבקשת להגדיר במדוייק. עוזי הביא את זה כדוגמא לבעייתיות בהגדרות רקורסיביות כמו זו היפה שגדי הציע.
רגע 333929
אוקי, הבנתי.
רגע 333502
בשפה לא-פורמלית ניתן לומר כי מרכיב שאינו מורכב הינו בהכרח אלמנטרי.

האם יש ספק בקשר לאי-המורכבות של ריקנות מוחלטת (= אי-תכולת הקבוצה-הריקה)?

לעניות דעתי התשובה היא לא, אך לקבוצה-הריקה קיימת קבוצה הופכית שאני מכנה אותה הקבוצה-המלאה, ותוכן הקבוצה-המלאה הינו רצף מוחלט אשר אינו מאפשר קיום של מרכיב זולתו, ולכן הקבוצה-המלאה הינה קבוצה אלמנטרית.
רגע 333503
מה הקבוצה ההופכית של הקבוצה {1}?
רגע 333519
{אף 1}
רגע 333521
לאיבר באוסף יש מרכיב משלים ל-‏0 אך השלמה זו אינה מצב קיום הופכי אלא תמונת ראי, ולפי מודל תמונת הראי, המצב המשלים ל-‏0 של {1} הינו {1-}.
רגע 333550
מערכת המספרים המרוכבים C (ש-R היא ציר X שלה) מאפסת עצמה ע"י "תמונות ראי" שלה.

ב"רקע" C מתקיימת הקבוצה-המלאה כ-oo וב"רקע" 0 מתקיימת הקבוצה-הריקה.
רגע 333575
המילים שאתה כותב מרכאות סביבן? אי אפשר להבין למה כוונתך בהן. תחליט - זו באמת תמונת ראי, או שזו "תמונת ראי"? אם כן, איך היא מוגדרת?
רגע 333574
אתה מאוד חופשי עם ההגדרות שלך. אני לא מבין את ההגיון שמנחה אותך ב"משלים". רגע אחד זה משלים סטייל תורת הקבוצות, ורגע אח"כ משלים סטייל איבר נגדי בחוג.

מה המשלים של {{}, {{}}, {{{{}}},{}}}?
רגע 333661
גדי,

אסביר שוב, את עולם המתמטיקה-המונדית:

יש שניי מצבי-יסוד בלתי מורכבים המשמשים כאי-שונות הקיומית של המתמטיקה-המונדית.

מצבי-יסוד אלה הם:

א) ריקנות מוחלטת.

ב) מלאות מוחלטת.

המתמטיקה-המונדית היא *לא פחות* מהגישור בין (א) לבין (ב), כאשר (א) ו-(ב) הם עצמאיים-הדדית (לכן השתמשתי במילה "גישור" ולא במילה "חבירה", אשר אינה מחייבת בהכרח עצמאיות-הדדית), או במילים אחרות, הם האקסיומות המכוננות את המתמטיקה-המונדית.

תמונת-ראי מתקיימת רק ואך ורק בין האלמנטים שהם תוצרי הגישור בין (א) ל-(ב), לדוגמא:

1_0 (השקול ל-‏1 במתמטיקה רגילה) הוא תמונת ראי של 0_1 (השקול ל- 1- במתמטיקה רגילה).

בקיצור, יש תלות קיום הררכית של תמונות-הראי, בעצמאיות-ההדדית של (א) ושל (ב).
רגע 333552
"1. האם הקבוצה הריקה היא אלמנטרית?
2. האם יש עוד קבוצות אלמנטריות?

לשאלה השניה, כמובן שלא: המרכיב היחיד של {{}} הוא הקבוצה הריקה.

לגבי השאלה הראשונה, נדמה לי שהתשובה שלילית, אבל בשלב הזה קצת מוקדם לעלות עם חד-אופן על חבל מתוח."

עוזי, מדוע אתה חושב שיש מרכיב לקבוצה-הריקה (או במילים אחרות, שהקבוצה-הריקה *איננה* אלמנטרית)?

ומדוע אתה חושב שאין עוד קבוצות-אלמנטריות (מכיוון שהטלת ספק באלמנטריות של הקבוצה הריקה, אינני מבין על איזה מרכיב אתה מדבר)?
רגע 333559
אחזור על ההגדרה (שלי): קבוצה "אלמנטרית" זו קבוצה שהיא מרכיב בכל קבוצה לא ריקה. להגדרת המושג "מרכיב", ראה ההודעה הקודמת‏1.

ההגדרה אינה אומרת שקבוצה אלמנטרית היא קבוצה שאין לה מרכיבים (זו הגדרה די משעממת: יש רק קבוצה אחת ללא מרכיבים - הקבוצה הריקה).

האם אתה משוכנע שהקבוצה הריקה היא אלמנטרית *לפי ההגדרה שלי*? זה ידרוש להוכיח שהיא מרכיב בכל קבוצה לא ריקה; הייתי שמח לראות הוכחה כזו.

1 אני יכול להבין מה מוצאים בזה.
רגע 333674
לפי ההגדרה שלך, *אין* שום קבוצה אלמנטרית, לא?
רגע 333729
לא יודע (יש רק מועמד אחד: הקבוצה הריקה).
רגע 333690
"ההגדרה אינה אומרת שקבוצה אלמנטרית היא קבוצה שאין לה מרכיבים (זו הגדרה די משעממת: יש רק קבוצה אחת ללא מרכיבים - הקבוצה הריקה)."

א) אתה טועה, גם הקבוצה המלאה {__} איננה קבוצה מורכבת, בדיוק כמו הקבוצה-הריקה {}.

ב) קבוצות אלה הם ההיפוך המדוייק של שיעמום, לדוגמא:

עפ"י תורת-הקבוצות האקסיומטית, קבוצה לא-ריקה אינה קיימת ללא קיומה של הקבוצה הריקה, לכן הקבוצה-הריקה היא אמת המידה המוחלטת לקביעת היחסים בין קבוצות לא-ריקות.

אני תוהה מדוע התעלמת כליל מהיררכיית-קיום זו, כפי שאני מגדיר ומסביר בקצרה בתגובה 333287

המתמטיקה-המונדית הינה מרחב-הגישור בין הקבוצה-הריקה לקבוצה -המלאה, כפי שאני מסביר בקצרה בתגובה 333661

בקיצור עוזי, אינני מבין כלל מדוע אתה בוחר להתעם כליל מהיררכית-הקיום של תלות קבוצות לא-ריקות הקבוצה-הריקה?

ומדוע אתה בוחר להתעלם כליל מקיום הקבוצה-המלאה וממרחב-הגישור הקיים בינה ובין הקבוצה-הריקה?
רגע 333732
"עפ"י תורת-הקבוצות האקסיומטית, קבוצה לא-ריקה אינה קיימת ללא קיומה של הקבוצה הריקה"

למה החלטת ככה?
רגע 333745
"למה החלטת ככה?"

בטל נא את אקסיומת הקיום ב-ZF , ותבין.
וריאציות על ZF 333753
ביטלתי. עדיין נשארה אקסיומה לפיה יש קבוצה אינסופית. עדיין יש לי תורת קבוצות (חלשה יותר, וקצת פחות מעניינת, אבל קיימת).

נניח שביטלנו גם אותה - קיבלנו מערכת שבה השאלה האם קיימת קבוצה *אינה כריעה*, ובפרט, אין הליך סופי שבמהלכו אנחנו בונים קבוצה ספציפית. זה עדיין לא מוכיח שהקבוצות *לא* קיימות.

עכשיו ניקח את אותה מערכת, ונוסיף לה את אקסיומת הקיום של הקבוצה {.}. מה קיבלנו? עוד מערכת חלשה יותר ‏1 מ-ZF, שניתן *להוכיח* שיש בה קבוצות.

אאל"ט, ניתן להוסיף למערכת אקסיומה לפיה לכל קבוצה יש איבר, ועדיין להישאר עם מערכת עקבית.

מסקנה: אנחנו בהחלט יכולים לעסוק במערכת שבה הקבוצה הריקה לא קיימת, וקבוצות אחרות קיימות. אז למה אנחנו מתעקשים להתבסס רק על שתי אקסיומות קיום? כי זה נוח, ו-Because we can.

1 אאל"ט, בכל משפט בתורה שלנו נוכל להחליף את הנקודה בקבוצה הריקה, ולקבל משפט ב-ZF. לעומת זאת, ההיפך אינו נכון.
וריאציות על ZF 333770
"ביטלתי. עדיין נשארה אקסיומה לפיה יש קבוצה אינסופית."

אם ביטלת את קיומה של הקבוצה הריקה, אינך יכול להשתמש בקבוצה לא-ריקה, כי {.} אינו קיים ללא {} כאשר {} הינו מושג הקיבוץ בכבודו ובעצמו, הקיים לעצמו ללא כל תוכן, ומצב זה הו מצב-היסוד של עצם מושג הקבוצה.

ללא מצב-יסוד זה, אין בידך תורת-קבוצות, פשוטו כמשמעו.
וריאציות על ZF 333774
"{.} אינו קיים ללא {}" - זו הנחת המבוקש. אתה הצגת טענה זו, אני כתבתי תגובה בניסיון להראות לך שהיא שגויה, ואתה טענת שהטיעון שלי אינו נכון, *כי הטענה המקורית נכונה*.

"{} הינו מושג הקיבוץ בכבודו ובעצמו, הקיים לעצמו ללא כל תוכן" - לא נכון. אתה אולי חושב ככה כי הסימן של הקבוצה הריקה הוא "רק סוגריים". בכך אתה מסתמך על שיטת הסימון, ומתעלם מהמהות. כפי ש*אתה* אמרת, המהות של הקבוצה הריקה לא תשתנה אם נסמן אותה כ-"{}", כ"הקבוצה הריקה", או כ-"Ø". הקבוצה הריקה היא מה שהיא, ותו לא. היא *לא* "הקיבוץ בכבודו ובעצמו".
וריאציות על ZF 333779
"{.} אינו קיים ללא {}" - זו הנחת המבוקש."

לא זוהי היררכיית תלות-קיום פשוטה בתכלית.
וריאציות על ZF 333791
העובדה שהקיום של {.} תלויה בקיום של {} *היא בדיוק* הטענה המבוקשת שהנחת.
וריאציות על ZF 333803
"העובדה שהקיום של {.} תלויה בקיום של {} *היא בדיוק* הטענה המבוקשת שהנחת."

לא ביקשתי דבר, אלא טענתי ישירות ובגלוי כי לא ניתן לדון במושג ללא קיומו האלמנטרי המינימלי של אותו מושג.

לדוגמא:

זירת-משחק קיימת גם ללא משחק (לדוגמא: במה ריקה) אך משחק אינו קיים ללא זירת-משחק (לדוגמא: אי-קיום במה).
וריאציות על ZF 333806
טענת ישירות ובגלוי, אבל לא הצגת שום ראיה לכך שהקבוצה הריקה היא הקיום האלמנטרי של קבוצה. לדעתי, היה ניתן ליצור גם תורת קבוצות בלעדיה.
וריאציות על ZF 333810
עיין נא בתגובה 333809
וריאציות על ZF 333813
כבר עניתי לה.

בכל אופן, אני לא מקבל את זה כמובן מאליו שהקבוצה הריקה היא המצב הבסיסי של קבוצה. אתה יודע מה? לצורך הדיון, אני כופר גם בקיומה של הקבוצה הריקה! ‏1

1 אחרי הכל, היא "קיימת" רק במובן אחד: כשאני מניח שהיא קיימת, נוצרת מתמטיקה מעניינת.
וריאציות על ZF 333820
"בכל אופן, אני לא מקבל את זה כמובן מאליו שהקבוצה הריקה היא המצב הבסיסי של קבוצה. אתה יודע מה? לצורך הדיון, אני כופר גם בקיומה של הקבוצה הריקה! ‏1

1 אחרי הכל, היא "קיימת" רק במובן אחד: כשאני מניח שהיא קיימת, נוצרת מתמטיקה מעניינת."

הקבוצה-הריקה היא האטום של תורת-הקבוצות האקסיומטית, ולכן אם היא לא קיימת, ZF לא קיימת.

שוב, טענתך כי ZF שורדת בצורה כלשהיא ללא הקבוצה-הריקה, שקולה לטענה שגופך קיים ללא אבני-היסוד שלו.

המתמטיקאים אינם עקביים בהתיחסותם לאבני-יסוד, כי מצד אחד הם מסכימים להשתמש במושג התלות בין אקסיומה למשפט הנגזר ממנה, אך ללא שום סיבה רציונלית, הם מתעלמים מהיררכיית-תלות של אלמנטים פשוטים באלמנטים מורכבים, ונותנים מעמד קיום זהה לאלמנט מורכב ולאלמנט מרכיב.

במקרה של ZF, הקבוצה-הריקה היא האלמנט המרכיב (אבן-היסוד) של כל קבוצה מורכבת, וקבוצה מורכבת היא בהכרח קבוצה לא-ריקה, התלויה לחלוטין בקיומה של אבן-היסוד שלה (קרי, הקבוצה-הריקה).
וריאציות על ZF 333824
"הקבוצה-הריקה היא האטום של תורת-הקבוצות האקסיומטית" - לא מדויק. יש עוד אקסיומת קיום של קבוצה, שלא עוסקת כלל בקבוצה הריקה.

"לכן אם היא לא קיימת..." - לא נכון. גם אם נחליף את אקסיומת הקיום של הקבוצה הריקה באקסיומת האי-קיום של הקבוצה הריקה, נקבל ככל הנראה מערכת אקסיומות עקבית, שיש בה קבוצות (אקסיומת הקבוצה האינסופית, זוכר?).

"גופך קיים ללא אבני-היסוד שלו" - המושג "הגוף שלי" יכול להיות קיים בעולם היפותטי ללא אבני היסוד שלו. ממש כך.

"הם מתעלמים מהיררכיית-תלות של אלמנטים פשוטים באלמנטים מורכבים, ונותנים מעמד קיום זהה לאלמנט מורכב ולאלמנט מרכיב" - למה אתה חושב ככה? מתמטיקאים יודעים להבדיל היטב בין אקסיומה למשפט, למשל. יש גם דוגמה יותר מוצלחת: רדוקציה חישובית. זה בדיוק הדבר שאתה קורא לו "היררכיית-תלות" עבור הקיום של אלגוריתמים שמחשבים פונקציות שונות. המושג הזה אינו "תבוני" כלל - הוא ממש פורמלי. בכל אופן, מתמטיקאים אכן חוקרים אותו.
וריאציות על ZF 333866
"לא מדויק. יש עוד אקסיומת קיום של קבוצה, שלא עוסקת כלל בקבוצה הריקה."

אם הקבוצה-הריקה לא קיימת, אקסיומות אלה "טוחנות ריק" - פשוטו כמשמעו.

"(אקסיומת הקבוצה האינסופית, זוכר?)."

כדי לזכור את אקסיומת האינסוף צריך שיהיה לה איזה תוצרת, אך ללא קיום הקבוצה הזו, אין תוצרת, אז אני לא זוכר אותה.

"המושג "הגוף שלי" יכול להיות קיים בעולם היפותטי ללא אבני היסוד שלו. ממש כך."

אם כך הוא ישות אלמנטרית השקולה לקבוצה-הריקה בתורת קבוצות.

"למה אתה חושב ככה?"

כי {{}} קיים ללא תלות ב-{} עפ"י המתמטיקה הסטנדרטית.
וריאציות על ZF 333871
מי אמר ש-{{}} קיימת בכלל?

נ.ב.
"אם הקבוצה-הריקה לא קיימת, אקסיומות אלה 'טוחנות ריק"' - שוב אתה מניח את המבוקש, בלי להציג שום טיעון שיצדיק אותו. יותר מזה: אתה מתעקש להתעלם מאקסיומה שאומרת ש*קיימת* קבוצה אינסופית.
וריאציות על ZF 333781
'' הקבוצה הריקה היא מה שהיא''

הקבוצה הריקה היא מצב הקיום הכרחי של עצם המושג ''קבוצה'', ובלעדיו אינך יכול לדון כלל במושג זה, ללא כל קשר לסימון זה או אחר.

מה שאתה עושה כאן הוא דוגמא מאלפת להתעלמות מתובנה פשוטה של מושג, ובחירה בדרך מפותלת ומסובכת של הגדרות נעדרי תובנה.
וריאציות על ZF 333788
איזו הגדרה הגדרתי כאן, אם יורשה לי לשאול?

חוץ מזה, לגבי הטענה לפיה "הקבוצה הריקה היא מצב הקיום ההכרחי של עצם המושג 'קבוצה"', אני אכתוב שוב את מה שכתבתי בתגובה 333783:
בעיני אנשים רבים, "קבוצה" היא משהו שיש בו איברים. לדעתם "מצב הקיום ההכרחי" של קבוצה הוא קבוצה בת איבר אחד. הם אפילו לא מסוגלים לראות איזו מהות יש לקבוצה שאין בה איברים.
מה תגיד להם על זה?
וריאציות על ZF 333812
שוב, עייו נא בתגובה 333809
משחק ההפניות 333814
תגובה 333813.
וריאציות על ZF 333778
"ביטלתי. עדיין נשארה אקסיומה לפיה יש קבוצה אינסופית. עדיין יש לי תורת קבוצות (חלשה יותר, וקצת פחות מעניינת, אבל קיימת)."

אייל צעיר,

בו ונבחן את ההגדרה: "קיימת קבוצה".

מותר לנו להשתמש רק ואך ורק במידע העומד לרשותנו, ואסור לנו בשום צורה ואופן לשער השערות או להניח הנחות שאינן נובעות ישירות מהמידע העומד לרשותנו.

בתנאים של מינימום אפשרי זה, ברור לחלוטין כי ההגדרה "קיימת קבוצה" מתייחסת רק לקיום מושג הקבוצה בלבד, ומינימום זה מאפשר אך ורק את קיומה של קבוצה ללא תוכן.

אנלוגיה:

הגדרה: "קיים תיק".

לפי מידע זה אני יודע כי קיים תיק, וקיומו של התיק אינו תלוי בתכולתו.

תיק שאינו תלוי בתכולתו הינו התיק לעצמו ללא תכולתו, ותיק זה הוא ללא שפק תיק ריק.

כשם שתיק-ריק הוא מצב הקיום האלמנטרי של תיק, כך הקבוצה-הריקה היא מצב הקיום האלמנטרי של קבוצה, ואי-קיומה של הקבוצה-הריקה, מונע את קיומה של קבוצה, ומונע את קיומה של תורת-קבוצות.
וריאציות על ZF 333783
אצלי בבית קיים תיק, ואין לי בבית אף תיק ריק ‏1.

למה אתה מתכוון כשאתה אומר "אסור לשער השערות"? אם לא היינו יודעים שיש קבוצה ריקה, ולא היינו יודעים שיש קבוצה אינסופית האם לא היו כלל קבוצות?
תשובה: שאלה זו לא הייתה ניתנת להכרעה. כלומר, אין זה נכון בהכרח ש*לא היו קבוצות* ‏2, אלא ש*אולי* היו קבוצות.

הנה למדנו בשיעור על מודלים חישוביים את המושגים "מילה" ו"שפה" בחישוביות, וכמה תלמידים לא הסכימו לקבל את קיומן של "המילה הריקה" ושל "השפה הריקה".
אם היינו שואלים את אותם תלמידים מהי קבוצה, הם היו עונים משהו בסגנון "דבר שיש בו איברים". אם היית אומר להם ש"קיימת קבוצה" הם *לא* היו חושבים שברור מאליו שקיימת קבוצה ריקה. להפך. לדעתם ל"ריק" לא יכולה להיות מהות כקבוצה. המצב ה"בסיסי" של קבוצה לדעתם היה צריך להיות מצב בו לקבוצה יש איבר אחד.

1 לצורך כתיבת תגובה זו, אספתי את כל התיקים בבית שלי, והכנסתי זוג גרביים לכל תיק.
2 בהנחה ש-ZF עקבית וכל זה.
וריאציות על ZF 333787
היה לי פעם ויכוח מרתק עם מישהו שסירב לקבל את הקיום של הקבוצה הריקה כי הוא לא היה מוכן לקבל את זה שקבוצה היא לא סך כל האיברים שלה. הוא גם לא ראה שום הבדל בין קבוצה בעלת איבר אחד ובין האיבר שהיא מכילה. זו הייתה הנקודה שבה הבנתי שלפעמים ''תובנות'' זה לא מספיק, וחייבים להשתמש בהגדרות פורמליות אם רוצים להגיד משהו שבן השיח שלך יוכל להבין.
וריאציות על ZF 333815
''...כי הוא לא היה מוכן לקבל את זה שקבוצה היא לא סך כל האיברים שלה''

קיומה של קבוצה אינו תלוי כהוא זה בשיוך או אי-שיוך של אלמנטים אליה, אך ברור לחלוטין שמצב הקיום המינימלי שלה שקול לקבוצה-הריקה.

''הוא גם לא ראה שום הבדל בין קבוצה בעלת איבר אחד ובין האיבר שהיא מכילה.''

כי הוא התייחס לאי-השפעת השיוך על הקיום האלמנטרי של קבוצה, כאשר קיום אלמנטרי זה שקול לקיומה של הקבוצה הריקה.

''זו הייתה הנקודה שבה הבנתי שלפעמים ''תובנות'' זה לא מספיק, וחייבים להשתמש בהגדרות פורמליות אם רוצים להגיד משהו שבן השיח שלך יוכל להבין.''

זאת הנקודה שבמקום להשתמש בתובנה הפשוטה של היררכית תלות-קיום, בחרת בדרך של משחקי שפה פורמלית נעדרי תובנה.
וריאציות על ZF 333855
אתה שם לב שאתה לא אומר שום דבר חדש בהודעות החדשות שלך, נכון?
וריאציות על ZF 333860
"נכון?"

לא נכון!
וריאציות על ZF 333809
"לצורך כתיבת תגובה זו, אספתי את כל התיקים בבית שלי, והכנסתי זוג גרביים לכל תיק."

האם הוצאת והכנסת חפצים לתיק, שינתה משהו בקיומו העצמי של התיק?

בוודאי שלא, אך אם התיק אינו קיים כלל לא היית יכול להכניס גרביים לתוכו, ותיק במצב קיום אלמנטרי הוא תיק ריק, ובזכות קיומו האלמנטרי, ניתן להכניס או לא להכניס לתוכו חפצים.

זוהי המשמעות הפשוטה והישירה של תלות-קיום, שיוך לתיק מחייב לפחות את קיומו של תיק ריק, וזהו בדיוק מעמדה של הקבוצה-הריקה ביחס למושג השיוך בתורת-קבוצות.

לכן ללא קיום הקבוצה-הריקה אין שיוך, וללא שיוך אין תורת-קבוצות.
וריאציות על ZF 333811
וכל זה לא משנה את העובדה שיש לי בבית תיק כלשהו, ואין לי בבית תיק ריק. כלומר, יכול להתקיים עולם שיש בו תיק ואין בו תיק ריק.
וריאציות על ZF 333816
''יכול להתקיים עולם שיש בו תיק ואין בו תיק ריק.''

זה שקול לטענה כי גופך יכול להתקיים ללא האטומים המרכיבים אותו, אך האטומים אינם יכולים להתקיים ללא גופך.
וריאציות על ZF 333818
בדיוק כך. אני יכול לתאר תמונת עולם פיזיקלית שבה יש לי גוף, אבל הוא לא בנוי מאטומים. מצד שני, אם האטומים שלי קיימים, ויש להם את הצורה של הגוף שלי, והם מתפקדים בידיוק כמו הגוף שלי, אז הם בהכרח מהווים את הגוף שלי.
וריאציות על ZF 333822
"בדיוק כך. אני יכול לתאר תמונת עולם פיזיקלית שבה יש לי גוף, אבל הוא לא בנוי מאטומים."

אם גופך קיים אך אינו מורכב (וזה לא משנה ממה) אז גופך שקול לישות אלמנטרית, וישות אלמנטרית ב-ZF היא בדיוק הקבוצה-הריקה.
וריאציות על ZF 333823
לא הבנתי במה התגובות שלך קשורות לנושא המאמר
וריאציות על ZF 333825
התגובות שלו *הן* נושא מאמר.
וריאציות על ZF 333831
"תגובות שלו *הן* נושא מאמר."

מה פתאום, הרי לפי המתמטיקאים, המאמר על טרחנים-כפייתיים מתקיים גם ללא הקיום (להלכה או למעה) של טררחן כפייתי, ולכן אי-הבנתו של האייל האלמוני יש לה בסיס איתן.
וריאציות על ZF 333839
לפי המתמטיקה המונדית, לא יכול להתקיים מאמר על טרחנים כפייתיים, בלי שמתקיים מאמר כזה בצורתו הבסיסית - כלומר, אם יש מאמר על טרחנים כפייתיים, קיים מאמר על טרחנים כפייתיים בלי שקיימים טרחנים.
וריאציות על ZF 333845
''קיים מאמר על טרחנים כפייתיים בלי שקיימים טרחנים.''

שקול הדבר לקיומה של קבוצה-ריקה.
וריאציות על ZF 333847
אתה רוצה להגיד שהקבוצה הריקה קיימת אם ורק אם יש מאמר שנכתב על טרחנים כפייתיים *לפני* שהיו טרחנים כפייתיים?

נו, טוב. אני הרי כופר בקיומה של הקבוצה הריקה ‏1.

1 לצורך הדיון.
וריאציות על ZF 333856
"אתה רוצה להגיד שהקבוצה הריקה קיימת אם ורק אם יש מאמר שנכתב על טרחנים כפייתיים *לפני* שהיו טרחנים כפייתיים?"

חלילה, הקבוצה הריקה קיימת אם ורק אם מושג הקבוצה קיים.
וריאציות על ZF 333861
כמו שציינתי, אין הכרח בקיום הקבוצה הריקה, כדי שתתקיים קבוצה.

וכדי שהדיון הזה לא ימשיך להתנהל כמו שהוא מתנהל עכשיו ("כן!", "לא!", "כן!", "לא!") אני אציין שחובת ההוכחה מוטלת עליך. הוכח בבקשה שאם קיימת קבוצה, קיימת הקבוצה הריקה.
וריאציות על ZF 333867
''כמו שציינתי, אין הכרח בקיום הקבוצה הריקה, כדי שתתקיים קבוצה.''

זה היופי פה, אין פה שום הכרח.

אם יש קבוצה, אז היא לא פחות מהקבוצה-הריקה.

כמה פשוט, ככה יפה.
וריאציות על ZF 333873
זה שקבוצה היא "לא פחות מהקבוצה הריקה" (מתי קבוצה היא יותר מקבוצה אחרת? אם היא מכילה אותה?) לא אומר שהיא "מורכבת" מהקבוצה הריקה, ולכן זה לא אומר שהקבוצה הריקה קיימת.

כמה פשוט, ככה יפה.
וריאציות על ZF 333878
"זה שקבוצה היא "לא פחות מהקבוצה הריקה" "

משמעותו של משפט זה היא:

אם יש קבוצה, אז זאת לפחות הקבוצה-הריקה.

הוכחת תלות-הקיום של קבוצה מורכבת בקבוצה לא-מורכבת:

אלמנטרי (הגדרה):

ישות יסודית, שאי-קיומה מונע את קיומם של אלמנטים המורכבים ממנה (תרתי משמע).

ועכשיו דוגמאות והסברים:

טענה 1:

אם {} לא קיימת, אז {{}} בהכרח לא קיימת.

הוכחה לטענה 1:

אם {} אינה קיימת ב-{{}} אז {{}} אינו אלא {}, אך {} לא קיימת לכן {{}} אינה יכולה להתקיים ללא {} כאלמנט יסוד שלה.

טענה 2:

אם {{}} לא קיימת , לא נובע בהכרח ש-{} לא קיימת.

הוכחה לטענה 2:

אם אנו מסירים את הסוגריים החיצוניים של {{}}, {} קיימת, ולכן קיום {} אינו תלוי בקיום {{}}.

מסקנה:

{} הינה קבוצה אלמנטרית ואילו {{}} הינה קבוצה מורכבת.
וריאציות על ZF 334252
תגובה 333871.
וריאציות על ZF 334388
כדי להבין את מושג ההיררכיה אנא עיין בתגובה 334032

תודה, ושנה-טובה.
וריאציות על ZF 333843
מתמטיקאים אמתיים מסוגלים להבחין בד''כ בין המתמטיקה למציאות.
וריאציות על ZF 333846
''מתמטיקאים אמתיים מסוגלים להבחין בד''כ בין המתמטיקה למציאות.''

הגדר נא ''מציאות''.
וריאציות על ZF 333854
מה שחומק מהגדרות.
  וריאציות על ZF • דורון שדמי
  וריאציות על ZF • האייל הצעיר
  וריאציות על ZF • דורון שדמי
  וריאציות על ZF • האייל האלמוני
  וריאציות על ZF • דורון שדמי
  וריאציות על ZF • האייל האלמוני
  וריאציות על ZF • האייל הצעיר
  וריאציות על ZF • דורון שדמי
  וריאציות על ZF • האייל הצעיר
  וריאציות על ZF • דורון שדמי
  וריאציות על ZF • האייל הצעיר
  וריאציות על ZF • דורון שדמי
  וריאציות על ZF • גדי ו.
  רגע • עוזי ו.
  רגע • דורון שדמי
  רגע • האייל הצעיר
  רגע • דורון שדמי
  רגע • האייל הצעיר
  רגע • דורון שדמי
  רגע • אלון עמית
  מה זה האמס"ש? • סמיילי
  מה זה האמס"ש? • שוטה הכפר הגלובלי
  תודה (לא הבנתי, אבל בכל זאת, תודה) • סמיילי
  תודה (לא הבנתי, אבל בכל זאת, תודה) • אלון עמית
  תודה (לא הבנתי, אבל בכל זאת, תודה) • סמיילי
  רגע • אורי גוראל גורביץ'
  רגע • אלון עמית
  רגע • אורי גוראל גורביץ'
  עוד שאלה‏1 • אורי גוראל גורביץ'
  עוד שאלה‏1 • אלון עמית
  עוד שאלה‏1 • האייל האלמוני
  עוד שאלה‏1 • אלון עמית
  עוד שאלה‏1 • אורי גוראל גורביץ'
  עוד שאלה‏1 • אלון עמית
  עוד שאלה‏1 • מ. השור
  עוד שאלה‏1 • אלון עמית
  עוד שאלה‏1 • אורי גוראל-גורביץ'
  עוד שאלה‏1 • מ. השור
  עוד שאלה‏1 • אורי גוראל-גורביץ'
  עוד שאלה‏1 • מ. השור
  עוד שאלה‏1 • אורי גוראל-גורביץ'
  עוד שאלה‏1 • מ. השור
  עוד שאלה‏1 • אלון עמית
  עוד שאלה‏1 • מ. השור
  עוד שאלה‏1 • אלון עמית
  רגע • גלעד ברזילי
  רגע • אלון עמית
  רגע • שוטה הכפר הגלובלי
  רגע • אלון עמית
  רגע • גלעד ברזילי
  רגע • אלון עמית
  רגע • easy
  רגע • גלעד ברזילי
  רגע • אורי גוראל-גורביץ'
  רגע • גלעד ברזילי
  רגע • אורי גוראל-גורביץ'
  רגע • גלעד ברזילי
  רגע • האייל האלמוני
  רגע • D
  רגע • האייל האלמוני
  רגע • גדי אלכסנדרוביץ'
  רגע • עוזי ו.
  רגע • דורון שדמי
  רגע • עוזי ו.
  רגע • דורון שדמי
  רגע • דורון שדמי
  אלפיים שנות אי-הוכחה • רון בן-יעקב
  אלפיים שנות אי-הוכחה • עוזי ו.
  אלפיים שנות אי-הוכחה • רון בן-יעקב
  אלפיים שנות אי-הוכחה • דורון שדמי
  אלפיים שנות אי-הוכחה • האייל האלמוני
  רגע • דורון שדמי
  מה פתאום? • דורון שדמי
  מה פתאום? • עוזי ו.
  מה פתאום? • דורון שדמי
  מה פתאום? • עוזי ו.
  מה פתאום? • דורון שדמי
  רגע • אורי גוראל-גורביץ'
  רגע • האייל הצעיר
  רגע • האייל הצעיר
  רגע • אורי גוראל גורביץ'
  רגע • האייל הצעיר
  רגע • דורון שדמי
  רגע • מתוסכל

חזרה לעמוד הראשי

מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים