בתשובה לדורון שדמי, 24/09/05 1:03
חקירת מושג הקבוצה 331888
או.קיי, N שקולה לקבוצת "רמות הריקורסיה" (מושג בעייתי מאוד לכשעצמו ‏1) של קבוצה-שהיא-האיבר-היחיד-של-עצמה ‏2. איפה אתה רואה חוסר עקביות?

1 רמות הריקורסיה לא עוסקות באובייקטים שונים, אלא בדרכים שונות להציג את אותו אובייקט. כדי "למנות" את רמות הריקורסיה יש לעשות טריק דמוי-גדל, לבנות בתוך המערכת "מערכת בת" זהה לה, ו"למנות" את מספר הדרכים לייצג בה את הקבוצה, תוך שימוש ב-"{", "}", ו-"N" בלבד (מה שעוד יותר בעייתי, כי אין "מילה" כזאת N בשפה של המערכת). כשמציגים את זה ככה, זו לא נראית קבוצה מלאת חשיבות, נכון?
2 אגב, האם קינון טרנספיניטי נחשב? כי אם כן, הטענה איננה נכונה. אם עובדים על פי השיטה בהערה ‏1, אז קינון טרנספיניטי לא נחשב.
חקירת מושג הקבוצה 331889
" איפה אתה רואה חוסר עקביות?"

הגדרת N ל"אורך" ואיסור ...{{{N}}}... ל"גובה"

אגב אינך צריך את N לצורך זה וניתן למצוא את אותה שקילות בין N ל- ...{{{}}}...
חקירת מושג הקבוצה 331893
תיקון:
אגב אינך צריך את ...{{{N}}}... לצורך זה וניתן למצוא את אותה שקילות בין N ל- ...{{{}}}...

"כשמציגים את זה ככה, זו לא נראית קבוצה מלאת חשיבות, נכון?"

אודה לך אם לא תתבל את תגובותיך בתוכן לא רלוונטי.
חקירת מושג הקבוצה 331899
<הערה עוקצנית>
הייתי מבקש ממך אותו דבר, אבל חברי המערכת שונאים שמציפים את האתר בתגובות ריקות.
<\\הערה עוקצנית>

מה שאמרתי רלוונטי מאוד, ואיננו תבלין כלל וכלל. בהינתן קבוצה A שהיא היחידה ששייכת לעצמה, עוצמת הקבוצה
{ A, {A}, {{A}}, {{{A}}}, {{{{A}}}}... }
היא בדיוק 1!
לכן, אתה לא יכול לטעון לשקילות בין הקבוצה הזאת לקבוצת הטבעיים. אתה, לעומת זאת, עוסק בקבוצת רמות הקינון, שהיא הקבוצה:
{ "A", "{A}", "{{A}}", "{{{A}}}", "{{{{A}}}}"... }
זו קבוצת *דרכי הרישום* של A. למעשה, זו קבוצת דרכי הרישום של A שעונה על אילוצים מסוימים.

וכן, זאת לא נראית קבוצה מעניינת.
(מצד שני, אסור לסמוך על התחושות שלי יותר מדי.)
חקירת מושג הקבוצה 331902
"מה שאמרתי רלוונטי מאוד, ואיננו תבלין כלל וכלל. בהינתן קבוצה A שהיא היחידה ששייכת לעצמה, עוצמת הקבוצה

{ A, {A}, {{A}}, {{{A}}}, {{{{A}}}}... }

היא בדיוק 1!"

הכיצד?

הריי:

1 <--> A
2 <--> {A}
3 <--> {{A}}
...

חקירת מושג הקבוצה 331903
את הטענה "A היא היחידה ששייכת לעצמה" ניתן לבטא כך:
A={A}
ולכן:
A={{A}}
A={{{A}}}
A={{{{A}}}}
וכל האיברים של אותה קבוצה
{ A, {A}, {{A}}, {{{A}}}, {{{{A}}}}... }
למעשה שווים. לכן עוצמתה 1.

לעומת זאת, קבוצת רמות הקינון של הקבוצה, היא בסה"כ קבוצה של דרכים מסוימות לסימון הקבוצה A.
חקירת מושג הקבוצה 331909
האם נובע בכך ש:

a={a}

במסגרת ZF?

אם כך הדבר, האם:

{a,b,c,…} = {{a},{b},{c},…} ?
חקירת מושג הקבוצה 331923
לא עבור *כל* x מתקיים
x={x} .
דיברנו על קבוצה *מסוימת* שהגדרנו כך שהיא תקיים את התנאי הזה. גם לגביה יש בינינו הסכמה שההגדרה הזאת לא תקינה.
חקירת מושג הקבוצה 331894
לא הגדרתי איסור {{{N}}}. רק אמרתי שלא מתקיים
N={N}
למשל, כי N אינסופית בעוד {N} סופית מאוד (כאשר N היא קבוצת הטבעיים).

אני לא רואה שום בעיתיות בסדרה
{},{{}},{{{}}},{{{{}}}}...
אלא אם כן בא מישהו וטוען שכל האיברים בה שווים.

אין לי מושג מהן הגדרות "לאורך" ו"לגובה".

אני לא מבין איך שקילות סותרת את ה-Axiom of Foundation.

חזרה לעמוד הראשי

מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים