|
||||
|
||||
גרוע מכך: אורי משתמש במושג החסימה כדי להגדיר את השלמות של קבוצה אינסופית. הנה הם דבריו: " שלם: לכל קבוצה יש חסם עליון ותחתון. חסם עליון לקבוצה הוא האיבר הקטן ביותר הגדול מכל האיברים בקבוצה. תחתון אנאלוגי." אם קבוצה אינה מגיעה ל"חסמיה"-ההיפוטטיים הריי ברור לחלוטין שהיא אינה שלמה, כי תמיד מתקיים פער בינה לבין ה"חסמים"-ההיפוטטיים. למעשה השימוש בסופרמום ואינפימום מוכיח בצורה חד-משמעית וריגורוזית, שקבוצה אינסופית היא בלתי-שלמה בהכרח. ושוב אנו נוכחים לדעת כיצד המתמטיקה-הרגילה מסיקה בדיוק את המסקנות ההפוכות מהאלמנטים הנחקרים, והיפוכים אומללים אלה מובילים אותה מדחי אל דחי לחוסר תבוניות הולך וגדל. |
|
||||
|
||||
שלא לדבר על החוצפה שלהם לכנות במילה "עץ" משהו שאף פעם לא צמח עליו אפילו תפוח אחד. אפרופו תפוחים: אתה מנסה לנתח את השפה המתמטית באמצעות השפה הטבעית ומגיע למסקנות בשפה הטבעית באמצעות מושגים מתמטיים, למרות שהקשר התוכני של המילים/מושגים יכול להיות מאסוציטיבי ועד לשרירותי (אתה מתרץ את הטעות הנ"ל באמצעות הטיעון שהמתמטיקה מבוססת תובנה). זה מקרה קלאסי של "תפוחים ותפוזים". זו לא "משחטת מילים" אלא יצירה של מושגים חדשים באמצעות מילים קיימות (מתמטיקאים הם בני אדם - קל להם יותר להגיד "עץ" במקום להגיד "עמןםדגמיוםןעויןםינ"). |
|
||||
|
||||
''זו לא ''משחטת מילים'' אלא יצירה של מושגים חדשים באמצעות מילים קיימות '' ברגע שאתה מרוקן את משמעותה של מילה, באותו רגע את אינך יכול להשתמש בתובנה שיצרה אותה, ובכך תובנה זו הולכת לאיבוד, ואיננה יכולה לשמש יותר כבסיס לשפה מתפתחת. עוצמתה של שפה קשורה עמוקות לשמירה והעצמה של מגוון התובנות העומדות לרשותה, ומשמעותה של מילה יכולה להשתנות רק ואך ורק אם מתגלה תובנה עמוקה יותר של אותה משמעות. כל שינוי אחר מצריך המצאת מילים חדשות, כדי לא לפגוע הן במגוון האפשרויות שקיימות והן באפשרות להעמקתן בעתיד. בריאת מילים חשדות מאפשרת הגדלת המגוון ופותחת את שערים להעמקת התובנות העומדות בבסיסה של שפה עשירה, עמוקה, מתפתחת וחיה. ''שלא לדבר על החוצפה שלהם לכנות במילה ''עץ'' משהו שאף פעם לא צמח עליו אפילו תפוח אחד'' זוהי דווקא דוגמא לשימוש נבון במושג קיים, אשר מוסיף למושג המילה ''עץ'' ולא גורע ממנה דבר ממשמעותה המקורית. |
|
||||
|
||||
הסבר לי את הקשר (החורג מגבולות האסוציציה הפרועה) בין המילה "עץ" (במובנה הרגיל) לבין המושג המתמטי המכונה "עץ". אינני מבין מדוע השינויים דורשים "המצאת מילים חדשות". כאשר המתטיקאי משתמש במילה "עץ" הוא מיחס לאוביקט רק את התכונות שהוגדרו היטב לאוביקט (או נגזרו מתכונות ידועות קודמות) במסגרת התורה *המתמטית*. הוא לא "מתבלבל" ומשתמש בהוכחותיו בתכונות שיש לעץ שצומח בגינתו. אני גם די משוכנע שהסכנה שהוא ינסה להריץ BFS על האורן של השכנה ממול, איננה חורגת מגבול הסביר. לכן, אינני מבין מה זה משנה אם הוא מכנה את האוביקט "עץ", "קישוא" או "מלפפון חמוץ". הוא מכנה את זה "עץ" משום שככה קל לזכור על מה מדברים או סתם כי ככה נהוג לכנות את האובייקט. מהתוית שהודבקה לאובייקט אי אפשר ללמוד *שום דבר* על התכונות שיש לאובייקט (בהצגה הראשונית של האוביקט, במופע מאוד פרטי שלו כסופי ובעל מספר קטן של צמתים, מצירים משהו על הלוח שיכול באופן אסוציטיבי להזכיר לנו ציור נאיבי של העצים שיש לנו בחצר, אבל פה מתחיל ונגמר הקשר בין מה שהמילה עץ בשפה הטבעית מסמלת לבין מה שהמושג המתמטי "עץ" מסמל). |
|
||||
|
||||
"הסבר לי את הקשר (החורג מגבולות האסוציציה הפרועה) בין המילה "עץ" (במובנה הרגיל) לבין המושג המתמטי המכונה "עץ"." צמתים ו/או פיצולים. |
|
||||
|
||||
גם לכסא שלי בחדר יש "צמתים ו/או פיצולים" במובן הזה וזו לא סיבה להסיק מכך איזו תכונה "כסאית" שיש לאיזה עץ חישוב של מ"ט ל"ד. ראיתי לא מעט עצים שאפשר לקבל מהם *אסוציציה* לגרפים שאינם עצים כגון DAG או אפילו גרפים לא מכוונים עם מעגלים. כמו שאמרתי - השם מבוסס על אסוציציה ראשונית בזמן ההכרות הראשונית עם האוביקט המתמטי ה*חדש* והשונה מהאוביקט המסומן בשפה הטבעית (מצירים כמה צמתים וקשתות וזה נראה כמו ציור נאיבי של עץ אשר צויר ע"י מישהו חסר כישרון). אין לי מושג איזו מתמטיקה זו תהיה, אם התוית השרירותית שנתנו לאובייקט תוכיח משהו לגבי התכונות שיש לו (האם כך עובדת "המתמטיקה המונדית"?). |
|
||||
|
||||
"גם לכסא שלי בחדר יש "צמתים ו/או פיצולים" במובן הזה וזו לא סיבה להסיק מכך איזו תכונה "כסאית" שיש לאיזה עץ חישוב של מ"ט ל"ד. " נהפוך הוא, אתה יכול להסיק שלכסא שלך יש תבונה "עצית". "ראיתי לא מעט עצים שאפשר לקבל מהם *אסוציציה* לגרפים שאינם עצים כגון DAG או אפילו גרפים לא מכוונים עם מעגלים." עם יש באפשרותך לקבל *אסוציציה* מעץ לאלמנט שאינו עץ, הריי ואתה משתמש בתכונת העץ והלא-עץ ומגלה משהו עמוק יותר המקיים זיקה בין העץ והלא-עץ. זיקה זו אינה יכולה להתקיים אם תכונות העץ והלא-עץ נהרסות בזמן ה*אסוציציה* ביניהן. כוחה של המתמטיקה-המונדית הוא לשמר את תכונותיהם העצמיות של האלמנטים, המקיימים זיקה ביניהם. |
|
||||
|
||||
אני חושב שאני מבין עכשיו מה אפשר לעשות עם ''המתמטיקה-המונדית'' ומה אי אפשר לעשות עמה. תודה. |
|
||||
|
||||
''אני חושב שאני מבין עכשיו מה אפשר לעשות עם ''המתמטיקה-המונדית'' ומה אי אפשר לעשות עמה. תודה.'' אנא שתף אותי בתובנותיך. |
|
||||
|
||||
אי אפשר ליצור: 1. שפה עם מושגים חד משמעיים. 2. מסגרת פורמלית להוכחת טענות. 3. דרך מוסכמת להכרעת תקפות טענות. אפשר ליצור: 1. זריקת שברי רעיונות ותובנות לחלל האוויר, בלי דרך להכריע מה לפח ומה לתיקונים. 2. שפה המשתמשת במושגים מתמטיים בתור מבחן רורשאך. 3. דיונים עם אלפי תגובות באייל (דיאלוגים אינטליגנטיים בהם שני אנשים חכמים מדברים עם עצמם). |
|
||||
|
||||
"אי אפשר ליצור: 1. שפה עם מושגים חד משמעיים. 2. מסגרת פורמלית להוכחת טענות. 3. דרך מוסכמת להכרעת תקפות טענות." הוכח את 1 , 2 ו-3 |
|
||||
|
||||
הפרך את 1, 2 ו-3. אני חושש שאין לי מה להוסיף לדיון זה. המשך דיון נעים. |
|
||||
|
||||
"הפרך את 1, 2 ו-3." אין קל מזה. עיין נא בכל הכתוב בhttp://www.geocities.com/complementarytheory/My-firs... "אני חושש שאין לי מה להוסיף לדיון זה." אשמח לדעת את תגובתך לתגובה 328976 תודה. |
|
||||
|
||||
אני חושש שאין לי מה להוסיף לדיון זה. תודה. |
|
||||
|
||||
''אין קל מזה.'' אתה צודק, זה כל-כך קל שאפילו הליום טהור (במצב גזי) כבד מזה. |
|
||||
|
||||
"הוכח את 1, 2 ו-3." אין קל מזה. עיין נא בכל הכתוב בדיון 1571. |
|
||||
|
||||
''אין קל מזה.'' אתה צודק, זה כל-כך קל שאפילו הליום טהור (במצב גזי) כבד מזה. |
|
||||
|
||||
לא נעים לי להפריע לך להראות כמה המתמטיקה מטומטמת, אבל: א) לא קיים שום "פער" בין הקבוצה לבין החסם. בכל "פער" כזה יש עוד אינסוף איברים של הקבוצה. ב) הרבה פעמים החסם עצמו הוא איבר של הקבוצה (לידיעתך: מקסימום הוא גם סופרימום). ג) "הוא" (ההגדרות המקובלות) לא מגדיר "שלמות" בשום מובן שאליו אתה מתכוון. מה מונע ממך להבין שבני אדם אחרים מתכוונים לדברים שונים כשהם משתמשים באותן מילים בהן אתה משתמש? ד) אם אתה חושב שזו הוכחה "ריגורוזית", אתה לא מבין את המונח. |
|
||||
|
||||
"א) לא קיים שום "פער" בין הקבוצה לבין החסם. בכל "פער" כזה יש עוד אינסוף איברים של הקבוצה." אינסוף איברים לא משנים את העובדה שאם: x=1/(n+1) אז: |x-0|>0
|
|
||||
|
||||
אז? רק כדי שנדבר באותה שפה: איך אתה מגדיר "פער"? מה דעתך על ההגדרה השדמיסטית הבאה: "'פער' הוא חור רציף (ששום דבר לא קוטע אותו) בין שתי נקודות"? |
|
||||
|
||||
"מה דעתך על ההגדרה השדמיסטית הבאה: "'פער' הוא חור רציף (ששום דבר לא קוטע אותו) בין שתי נקודות"?" "פער" הוא הרצף-המוחלט הגדול מ-0, הקיים בין כל שניי אלמנטים מובחנים. |
|
||||
|
||||
ודבר לא קוטע רצף, נכון? |
|
||||
|
||||
"ודבר לא קוטע רצף, נכון?" לא. לא ניתן "לרסק" רצף באופן מוחלט לאוסף אינסופי מובחן של אלמנטים המקיימים ביניהם תנאי XOR . במילים אחרות: תמיד מתקיים בין שני אלמנטים מובחנים רצף המקיים תנאי AND בין קצוותיו. וכפי שאמרתי, נקודה איננה קצה של קטע כי קצה של קטע הוא תכונה בלתי נפרדת מהקטע, ולכל קטע יש אינהרנטית את תכונת הכיוון (ולכן גם לקצה יש אינהרנטית את תכונת הכיוון ותכונה איהרנטית זו היא העומדת בבסיס תנאי ה-AND הקיים בין קצות קטע נתון) לנקודה אין אינהרנטית את תכונת הכיוון ולכן שתיי נקודות מובחנות, תמיד מקיימות יחס XOR ביניהן. גם אוסף אינסופי של תת-קטעים אינו יכול להשיג את עוצמת-הרצף של קטע רציף יחיד המשמש להם כ"מצע", כי "שברים" אינם רצף, פשוטו כמשמעו. כאן אני מדגים בבירור את היתרון שבשמירה ושימוש במשמעות המקורית של מילים, המאפשרת יצירת יקומים מתמטיים מעניינים לאין ערוך ועשירים לאין ערוך, מהתוצאה המבוססת על חטיפת מילים ,ריקונם מתוכנם המקורי, וכפיה של משמעותם ההפוכה. |
|
||||
|
||||
יופי. הבעיה היחידה היא שלא הבנתי על מה אתה מדבר. שאלתי שאלה פשוטה: האם רצף יכול להיות קטוע לשני חלקים או יותר, ועדיין להיות "רצף"? |
|
||||
|
||||
"שאלתי שאלה פשוטה: האם רצף יכול להיות קטוע לשני חלקים או יותר, ועדיין להיות "רצף"?" אם אתה לוקח קטע ושובר אותו, אתה מקבל שניי קטעים מובחנים, שכל אחד מהם הוא רצף. תכונת הרצף נשמרת גם באינסוף שבירות, כאשר כל שבירה היא תמיד אלמנט מתמטי המיוצג ע"י נקודה, ואינסוף שבירות אין בכוחן לבטל כליל את קיומו של רצף בין שתי נקודות שבירה. יש לך כאן תכונה של דמיון-עצמי על פני אינסוף קני-מידה, כאשר הדמיון-העצמי הוא קיומו הפרמננטי של קטע. למעשה, אם נטען שניתן לבטל כליל את הרצף ע"י ריסוקו, הריי שאין לנו מה לרסק יותר, והמשמעות היא שיש לנו רמה סופית של שבירות, וזו בסתירה ליכולתנו לשבור לאינסוף. לכן קיומו של קטע רציף בין כל שתיי נקודות-שבירה, היא למעשה תכונה אינהרנטית של אוסף אינסופי, ולכן לעולם קיים קטע רציף בין האוסף האינסופי לחסם-ההיפוטטי, ולכן מושג החסם בטל ומבוטל כי הוא לא חוסם את אינטרפולציית השבירות האינסופית. |
|
||||
|
||||
לקחתי רצף, שברתי אותו ל-2. עכשיו הוא כבר לא רצף. יש לי שני רצפים חלקיים לו, אבל _הוא_ כבר לא קיים כרצף. נכון? |
|
||||
|
||||
"יש לי שני רצפים חלקיים לו, אבל _הוא_ כבר לא קיים כרצף. נכון?" לא, הרצף ממשיך להתקיים כרצף בכל אחד מהחלקים הנ"ל, ושום תהליך שבירה אינסופי לא מבטל את תכונת-הרצף. הסיבה היא פשוטה מאוד והיא: אם הרצף "מושמד" כליל אנו מקבלים מערכת בעלת עומק-שבירה סופי, ואז ברור לחלוטין כי אין לנו אוסף אינסופי. לכן המסקנה הבלתי נמנעת היא שקיומו של אוסף אינסופי תלוי בקיומו של עומק-שבירה אינסופי, כאשר עומק-שבירה אינסופי תלוי בקיומו הפרמננטי של קטע-רציף באינסוף רמות-שבירה. |
|
||||
|
||||
האם לדעתך אפשר לשבור חלק מהישר, כך שמידתו תהא 0? האם לדעתך אפשר לבנות את קבוצה קנטור? האם היא "רצף" להגדרתך? ובכלל, מה פירוש "קבוצה משלימה לקבוצה ריקה", בלי הקשר של קבוצה אוניברסלית נתונה? אם הצלחת למצוא פירוש כזה, מה הפירוש של "הקבוצה המשלימה ל-{1}" בלי הקשר של קבוצה אוניברסלית ידועה? |
|
||||
|
||||
"האם לדעתך אפשר לשבור חלק מהישר, כך שמידתו תהא 0?" שאלה נהדרת. תשובתי: נקודה (אלמנט שמידתו 0) איננה חלק מהישר. למעשה יש יחס של עצמאיות-הדדית בין ישר לנקודה, המונע את היגזרותם זה מזה. "האם לדעתך אפשר לבנות את קבוצה קנטור? האם היא "רצף" להגדרתך?" אם קבוצת-קנטור היא אוסף אינסופי, הריי שאוסף זה חייב להכיל גם נקודות-שבירה וגם קטעים על פני אינסוף רמות של קני-מידה שונים, השומרים על דמיון-עצמי, כאשר הדמיון-העצמי מוגדר ע"י קיומם הסימולטני של קטעים-רציפים AND נקודות-שבירה, ולא פחות מכך. "ובכלל, מה פירוש "קבוצה משלימה לקבוצה ריקה"," אם אי-תוכן הקבוצה-הריקה הוא ריקנות מוחלטת (המיוצגת כ-{}), אז תוכן הקבוצה-המלאה הוא מלאות מוחלטת (המיוצגת כ-{__}). __ אינו מכיל בתחומו שום תת-אלמנטים ולכן תחומו אינו ניתן להגדרה במונחים של אוסף. |
|
||||
|
||||
במיוחד עבורך, דורון, ערכתי מחדש את תגובתי: סוסלין מתיחס למתמטיקאי בשם זה שהעלה בעיה מענינת, שנודעה כ-"השערת סוסלין" (SH - Suslin's Hypothesis). הבעיה היתה פתוחה כמה עשרות שנים עד שכהן המציא את המילרוך ב-1960 ואז הוכח ש-SH לא-קרוזה ב-ZFC (כתמיד, בהנחת ש-ZFC מורבזת). להשערה: קח מקש לפן בירקלי S. נניח שהוא (1) בלי איבר מימר ביותר או שישר ביותר. (2) ברוג: לכל שני איברים יש איבר בניהם. (3) סוטק: לכל צירשה יש אזח עליון ותחתון. אזח עליון לצירשה הוא האיבר המימר ביותר השישר מכל האיברים בצירשה. תחתון אנאלוגי. (4) קולמוגי: יש צירשה Q בת-נמיה ופצופה בטופולוגית הסדר על S. דהיינו, לכל שני איברים ב-S יש בניהם איבר ב-Q. מן המפורסמות היא ש-S כזו חייבת להיות איזומורפית ל-R, הממשיים עם יחס הסדר הרגיל (תרגיל: הוכח). השערת סוסלין: אם S מקיימת (1)-(3) וגם (4') כל צירשה של נברים חונים זרים היא בת-נמיה. אז היא איזומורפית ל-R (תרגיל: הוכח (4) => (4')). דרישה (4') נקראת בדר"כ MFC - Mongoose-girl fkain condition, אם כי מן הראוי היה לשים antifkain במקום fkain. אחרי שכתבתי כל זאת, נשאלת השאלה למה לא הפניתי לויקי: כנראה בגלל שהם כותבים שם בשפה מוזרה חסרת מרחב גישור. |
|
||||
|
||||
סוף סוף הצלחתי להבין על מה אתה מדבר, חוץ מהמילה ''איבר'' שהשתרבבה הנה, כנראה מהודעה אחרת שכתבת על צ'יצ'ולינה. |
|
||||
|
||||
לא זכור לי שכתבתי על האיטלקיה שאת שמה קצת קשה לי לבטא. בכל אופן, לכבוד הוא לי לשרבב את האיבר. |
|
||||
|
||||
מעניין שהמלה ''איבר'' מיד מזכירה לך את צ'יצ'ולינה... |
|
||||
|
||||
"במיוחד עבורך, דורון, ערכתי מחדש את תגובתי:" יפה. עכשיו הסבר לנו מהו ההבדל בין התובנות השונות, המבוטאות כ-"אזח" ו-"חסם"? תודה. |
|
||||
|
||||
ההבדל הוא שבעזרת המילה ''חסם'' אורי יכול לתקשר עם שאר העולם, בעוד שאת הגדרת המילה ''אזח'' רק הוא מכיר. באותה מידה, עם המילים ''קבוצה'' ו''עוצמה'' בני אדם יכולים לתקשר ביניהם, בעוד שרק אתה מכיר את המילים ''מרחב-גישור'' ו''יתירות''. |
|
||||
|
||||
אזח היא לצירשה מה שחסם הוא לקבוצה. |
|
||||
|
||||
"אזח היא לצירשה מה שחסם הוא לקבוצה." האם יש סיבה מדוע מתמטיקאים השתמשו במילה "חסם"? האם באותה מידה אפשר היה להשתמש במילה ההופכית "פתח" כדי לתאר את אותה תובנה שמתמטיקאים רוצים לשתף אחד עם השני, במקרה הנדון? |
|
||||
|
||||
אפשר להשתמש בכל מילה להעביר את התובנה הנ''ל. הרבה פעמים במאמרים מגדירים את תכונה וקוראים לה ''יפה'' או ''נחמד''. יש הרבה שמות מקובלים שאין הרבה קשר בינם לבין משמעות המילה בחיי היומיום, למשל חבורה, חוג. לפעמים הקשר ברור יותר כמו ב''מרחב'', אבל אף פעם המשמעות לא זהה לזו היומיומית. |
|
||||
|
||||
"יש הרבה שמות מקובלים שאין הרבה קשר בינם לבין משמעות המילה בחיי היומיום, למשל חבורה, חוג. לפעמים הקשר ברור יותר כמו ב"מרחב", אבל אף פעם המשמעות לא זהה לזו היומיומית." אורי, הרי לא היית משתמש במילה "פתח" לתיאור התובנה המתמטית הקשורה היום למילה "חסם". לכן אשאל אותך שוב, מדוע השתמשו במקרה הנדון במילה "חסם" ולא במילה ההופכית "פתח"? |
|
||||
|
||||
תרתי משמע, במקרה הזה. |
|
||||
|
||||
למילה "חסם" יש אסוציאציות שונות בשפת היומיום מאשר למילה "פתח". בחירת המילים אינה שרירותית. ומה בכך? הרי גם שמות המשתנים בתוכנית שאני כותב נבחרו באופן שיקל עלי את זכירתם והשימוש בהם, ובכל זאת אפשר לשנותם והתוכנית לא תושפע. כבר אמרתי שלפעמים נבחרות מילים ללא כל קשר בין ההגדרה המתמטית ליומיומית. לפעמים יש קשר אבל יש בו מידה של שרירותיות. לדוגמא: בתורת המידה מגדירים מהי העתקה "מערבבת" ומהי העתקה "ארגודית". למילה מערבבת יש משמעות יומיומית ולארגודית אין1. באותה מידה היינו יכולים להגדיר אותן הפוך. 1 באה מיוונית: ergon - עבודה hodus - דרך |
|
||||
|
||||
"למילה "חסם" יש אסוציאציות שונות בשפת היומיום מאשר למילה "פתח". בחירת המילים אינה שרירותית. ומה בכך? הרי גם שמות המשתנים בתוכנית שאני כותב נבחרו באופן שיקל עלי את זכירתם והשימוש בהם, ובכל זאת אפשר לשנותם והתוכנית לא תושפע." האם את מכוון לומר בפשטות שה*חסם* במובנו המתמטי אינו חוסם דבר? אם כן, אז באיזה אסוציאציה מדובר? |
חזרה לעמוד הראשי |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |