|
||||
|
||||
"זו טענה מעגלית מובהקת, אלא אם יש הבדל טכני שאני לא מודע לו בין "ידועה" לבין "ידועה היטב". ידועה היטב, זה אומר שיש לא ערך חדמשמעי וקבוע כמו לקרדינל של קבוצה סופית. מושג הקרדינל בשיטתי פותח אפשרויות מחקר רבות לאין ערוך בין קבוצות אין סופיות, מאשר שיטת המיפוי המקובלת, לדוגמא: Let @ be |N|-Successor
If A = @ and B = @-2^@, then A > B by 2^@, where both A and B are collections of infinitely many elements. Also 3^@ > 2^@ > @ > @-1 etc. So as we can see, in my universe I have both non-finite collections and unique arithmetic between non-finite collections, which its result is always a non-finite collection. My results are richer than the Cantorean transfinite universe, for example: By Cantor aleph0 = aleph0+1 , by me @+1 > @ . By Cantor aleph0<2^aleph0 , by me @<2^@ . By Cantor aleph0-2^aleph0 is undefined, by me @-2^@ < @ . By Cantor 3^aleph0 = 2^aleph0 > aleph0 and aleph0-1 is problematic. By me 3^@ > 2^@ > @ > @-1 etc. |{{1,1,…}+1, 1,1,1}| > |{{1,1,…}+1}| by |{1,1,1}|. |{{1,1,…}+1,{1,1,…}+1}| = |{{1},{1}}|•@ > |{{1,1,…}+1}| by |{1}|•@ and |{{{1,1,…}+1, 1,1,…}+1}| = |{{1},1}|•@ > |{{1,1,…}+1}| by |{1}|•@ but they have different internal structures ( {{1},{1}} and {{1},1} ). For further information, please read http://www.geocities.com/complementarytheory/Success... . |
חזרה לעמוד הראשי |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |