|
||||
|
||||
"מובן?" לא. אם מסקנתי שגויה, סימן שאין אוסף סופי כזה. אם אין אוסף סופי כזה, אז אתה מאוד מבולבל, שכן הכרזת במו-מקלדתך שהמשפט "שום אוסף אינו יכול להשיג את עוצמת הקבוצה-המלאה" היה __טעון תיקון__, ואז תיקנת ל"שום אוסף __אינסופי__...". ועכשיו אתה מסביר לי שגם אוסף סופי כזה אין, אז למה התיקון? אתה חוזר למצב ש__לפני__ התיקון, שבו אין שום אוסף שיכול וכו', לא סופי ולא אינסופי? |
|
||||
|
||||
בו ואעזור לך דקדקן, תוכן הקבוצה המלאה ניתן לייצוג באופן המינימלי ההכרחי ע"י קו-ישר רציף לחלוטין (שאין בתחומו דבר למעט רציפותו המוחלטת) שאין לו התחלה ואין לו סוף. תוכן זה אינו ניתן להגדרה במונחים של אוסף, כאשר אוסף מחייב קיומו של לפחות אלמנט אחד *סופי*. ברור לחלוטין כי אוסף סופי מבוסס על כמות סופית ידועה היטב, של אלמנטים מובחנים היטב, ולכן הקרדינל (הכמות) של אוסף זה ידועה היטב ואיננה תלוייה כלל וכלל באיזה שהוא יחס לתוכן הקבוצה-המלאה. יותר מכך, אין אנו בוחנים את תוכן הקבוצה המלאה לפי מושג הכמות אלא לפי מושג המבנה, ועוצמת-הרצף של תוכן זה היא - פשוטו כמשמעו- הרציפות המוחלטת בהתגלמותה, שאיננה ניתנת לתיאור ע"י שימוש במושג הכמות. אוסף אינסופי אינו יכול להשיג את עוצמת-הרצף במובן המתואר לעיל מפני שכל אוסף אינסופי מכיל אינסוף אלמנטים מובחנים היטב, כאשר מצבים מובחנים אלה שוברים אינסוף פעמים את תכונת הרצף, המשוייכת רק ואך ורק לתוכן הקבוצה-המלאה, שהיא ורק היא הרציפות בהתגלמותה. כאשר אנו מבינים את הרצף בהתגלמותו, אנו מבינים מייד את הדברים הבאים: א) שום אוסף של אלמנטים מובחנים, אין לו את עוצמת הרצף, כי אוסף כזה שובר מבחינה מבנית את הרצף. ב) הרצף עצמו אינו ניתן לתיאור במונחים של אוסף כי אין בו שום תת-אלמטנים. ג) הכמות של אוסף סופי של אלמנטים מובחנים, ידועה היטב ואיננה קיימת כתוצאה מהשוואה בינה לבין הרצף המוחלט (שהייצוג המינימלי שלו הוא קו-ישר ללא התחלה וללא סוף, שאין בו אף תת-אלמנט בתחומו) ד) הכמות של אוסף אינסופי של אלמנטים מובחנים חייבת להיות לא ידועה, כי עם היא ידועה היטב, הריי היא בהכרח אוסף סופי. מצד שני, ברור לגמרי כי אוסף אינסופי של אלמנטים מובחנים אינו רציף (בהשוואה לתוכן הקבוצה-המלאה) ולכן אין לו את עוצמת-הרצף של תוכן הקבוצה המלאה, ולכן נובע מכך שהקרדינל המדוייק של אוסף אינסופי אינו בנמצא, ומזה נובע מיידית שהעולם הטרנספיניטי אינו בר-קיום. ה) היות והקרדינל המדוייק של אוסף סופי ידוע היטב, והקרדינל המדוייק של אוסף אינסופי אינו קיים, יש הפרדה ברורה לחלוטין בין אוסף סופי לאוסף אינסופי, או בקיצור נמרץ: אוסף סופי ואוסף אינסופי שייכים לקטגוריות נפרדות לחלוטין. מובן? |
|
||||
|
||||
בלה, בלה, בלה. ואני רק שאלתי שאלה פשוטה: אוסף סופי יכול להשיג את עוצמת הקבוצה המלאה? התשובה לזה יכולה להיות "כן", והיא יכולה להיות "לא", או שאולי בלוגיקה האורגנית הלא-דדוקטיבית שלך זה אחרת? אם "כן", הייתי מבקש שתאמר לי איזה אוסף סופי עושה זאת. אם "לא", אז אני מחזיר את כבודו בנימוס לתגובה 328270, לתת לך צ'אנס לתקן את התיקון שכבר תיקנת. |
|
||||
|
||||
"אוסף סופי יכול להשיג את עוצמת הקבוצה המלאה?" לא, והסיבה פשוטה בתכלית, כי תוכן הקבוצה-המלאה הוא רציפות מוחלטת אינסופית, ולכן מעצם הגדרה פשוטה זו אנו למדים, שהיות ואוסף סופי איננו אינסופי, הריי שאין לנו שום יכולת להשוות בינו לבין תוכן הקבוצה-המלאה. המצב שונה במקרה של אוסף אינסופי כי האינסוף משמש כאן כמושג משותף הניתן להשוואה, כאשר מדד ההשוואה הוא עוצמת-הרצף. כאשר מתבצעת ההשוואה, ברור לנו מיידית כי לאוסף אינסופי אין את עוצמת-הרצף של תוכן הקבוצה-המלאה. אחזור שנית: א) מבחינה מבנית ברור לגמריי ששום אוסף (סופי או אינסופי) אינו יכול להשיג את עוצמת-הרצף של תוכן הקבוצה-המלאה. ב) ברור לגמרי שאוסף סופי אינו ניתן להשוואה מבחינה כמותית לתוכן הקבוצה-המלאה כי אוסף סופי הוא סופי מעצם הגדרתו, ותוכן הקבוצה-המלאה הוא אינסופי מעצם הגדרתו. ג) ההשוואה בין אוסף אינסופי לתוכן הקבוצה-המלאה מתבססת על תכונת האינסופיות המשותפת לשניהם, אך אז ברור לחלוטין שמבחינה מבנית עוצמת-הרצף קיימת רק ואך ורק בתוכן הקבוצה-המלאה, ומייד אנו מבינים שהקרדינל המדוייק של כל אוסף אינסופי נתון, פשוט אינו קיים. יש מבין? |
|
||||
|
||||
"תוכן הקבוצה-המלאה הוא רציפות מוחלטת אינסופית". טוב ויפה. אבל מדוע להסיק מזה ש*עוצמתה* היא עוצמת הרצף? רק מפני שכך קוראים לזה במתמטיקה? מדוע לא להסיק שעוצמת הקבוצה המלאה היא, פשוט, ברמה העולה על כל אינסוף אחר? (ואגב, בוויקיפדיה אין כל תזכורת לכך שקנטור "ויתר" על הקבוצה המלאה משיקולים דתיים. הוא רק אמר שהקבוצה המלאה היא אלוהים. לא נאמר שם כלום על ויתור). |
|
||||
|
||||
אם כך, התיקון שלך את עצמך מקודם היה מיותר, ורק בעייה קטנה אחת נותרה: מקודם טענת "שום אוסף לא יכול להשיג את עוצמת הקבוצה המלאה, ולכן שום אוסף אינו שלם, ולכן לשום אוסף אין קרדינל מובחן". יש פה שרשרת של מסקנות ("א ולכן ב ולכן ג"), ועכשיו ראינו שאפשר להפעיל אותן בדיוק גם על אוספים סופיים (שכן גם הם לא יכולים וכו'). עכשיו אתה מביא נימוק אחר למה לאוסף סופי יש כן קרדינל מדוייק. יופי טופי, אבל זה עדיין סותר את מה שאמרת שם: לא יכול להשיג את עוצמת הרצף ---->> אין קרדינל מדוייק. האמת, סתם בא לי לראות אם אפשר להראות לך באופן חד-משמעי סתירה בתורה שלך, אבל זה די ברור שאתה קרנק מוכשר מדי בשביל ליפול בזוטות כאלה. אז שיהיה לך רק טוב ובהצלחה בלשכנע את כל מתמטיקאי העולם שהם עוורים. |
|
||||
|
||||
"אם כך, התיקון שלך את עצמך מקודם היה מיותר," טעות בידך, בזכות הדקדקנות שלך, הראתי בצורה חד-משמעית כיצד אלמטים מתמטיים יסודיים כמו רצף ואוסף, נבחנים גם בזכות תכונותיהם הכמותיות וגם בזכות תכונותיהם המיבניות. "עכשיו אתה מביא נימוק אחר למה לאוסף סופי יש כן קרדינל מדוייק. יופי טופי, אבל זה עדיין סותר את מה שאמרת שם: לא יכול להשיג את עוצמת הרצף ---->> אין קרדינל מדוייק." לא, הרחבתי את ההסבר המראה בבירור כי יש להבין את הנאמר הן מהבחינה המבנית והן מהבחינה הכמותית. "האמת, סתם בא לי לראות אם אפשר להראות לך באופן חד-משמעי סתירה בתורה שלך, אבל זה די ברור שאתה קרנק מוכשר מדי בשביל ליפול בזוטות כאלה. אז שיהיה לך רק טוב ובהצלחה בלשכנע את כל מתמטיקאי העולם שהם עוורים." אם כך אתה מודה שלו באת לקיים איתי דיון אמיתי, אלא באת ל"עשות ניסוי בקרנק". הניסוי לא הצליח לך, אבל אני נשארתי קרנק בשבילך. לצערי אתה דוגמא חיה ליכולת ניהול הדיאלוגים של רבים מבני קהילתך (המתמטיקאים ה"טהורים") שהזדמן לי לנהל איתם דו-שיח ב-4השנים האחרונות דרך ה-Internet . אינך מתאר לך עד כמה אני מיצר על כך. |
|
||||
|
||||
"ד) הכמות של אוסף אינסופי של אלמנטים מובחנים חייבת להיות לא ידועה, כי אם היא ידועה היטב, הריי היא בהכרח אוסף סופי." זו טענה מעגלית מובהקת, אלא אם יש הבדל טכני שאני לא מודע לו בין "ידועה" לבין "ידועה היטב". אגב, אפשר לפשט קצת את התסבוכת סביב מושג ה"עוצמה" אם מסכימים שאין כזה דבר בכלל (ברצינות). במקום להגיד "העוצמה של קבוצה A היא ...", נסתפק ב*השוואה* של עוצמות: "העוצמות של A ושל B שוות זו לזו אם ...", "העוצמה של A גדולה מזו של B אם ...". אחרי שרוכשים נסיון בכיוון הזה, אפשר להרשות גם מינוח מהסוג הראשון (בתנאי שזוכרים שאין לו משמעות). |
|
||||
|
||||
אני זוכר שכשלמדתי תורת הקבוצות חשבתי על "עוצמה" בדרך שאתה מתאר כאן, ואחר כך מישהו (מרצה?) אמר לי שלעוצמות יש קיום עצמאי כלשהו. יש משמעות? |
|
||||
|
||||
בדרך כלל, מגדירים את המונים להיות הסודרים שאינה שקולים (העתקה חח''ע ועל) לסודר קטן מהם. העוצמה של קבוצה מוגדרת להיות המונה השקול לה. יש לזה חשיבות כשאתה רוצה להוכיח שכל שתי עוצמות ניתנות להשוואה. |
|
||||
|
||||
לניסוח הזה של "מוגדרת להיות" (במקום, למשל, "מוגדרת בתור") יש איזו משמעות מיוחדת? |
|
||||
|
||||
לא. "מוגדרים להיות"=="מוגדרים בתור". |
|
||||
|
||||
מבחינה אתסטית-עברית, עדיף בעיני על שניהם ''מוגדרים כ-''. אולי קצת בעייתי בטקסט לא מנוקד כשהמלה הבאה מיודעת (כמו כאן). |
|
||||
|
||||
זה שוב אותו משחק. ה"אמת" היא שיש משמעות לעוצמה של קבוצה (=הסודר הקטן ביותר בעל אותה עוצמה (שימו לב לחוסר המעגליות של ההגדרה!), כפי שאורי הסביר). אבל בשלב מוקדם יותר בלימוד הנושא, אפשר להסתדר מצויין גם בלי העניין הזה. |
|
||||
|
||||
נהדר. העברת את הבעיה מבעיה של להבין מה זה עוצמות, ששייכות לשלב שבו עוד הקשבתי בהרצאה, לבעיה של להבין מה זה סודרים, ששייכים לשלב שבו אפילו המרצה כבר לא הקשיב. |
|
||||
|
||||
לא נכון - פתרתי אותך לגמרי מהצורך ''להבין מה זה עוצמות''. למי שאיננו מתעסק בתורת הקבוצות מספיק בדרך כלל ''להבין מתי שתי עוצמות שוות זו לזו'' (וזה הרבה יותר פשוט). |
|
||||
|
||||
כן, אבל אני דווקא רוצה לדעת מה זה עוצמות (טוב, עכשיו אני יותר רוצה לדעת מה זה סודרים, ולא לקרוא את קונווי בשביל זה) |
|
||||
|
||||
אתה תמיד יכול להתחיל כאן: לשאול את דרכך משם. |
|
||||
|
||||
(שכר לימוד: אתה צריך לתרגם את הערך לעברית). |
|
||||
|
||||
הערך כבר קיים בעברית: |
|
||||
|
||||
"זו טענה מעגלית מובהקת, אלא אם יש הבדל טכני שאני לא מודע לו בין "ידועה" לבין "ידועה היטב". ידועה היטב, זה אומר שיש לא ערך חדמשמעי וקבוע כמו לקרדינל של קבוצה סופית. מושג הקרדינל בשיטתי פותח אפשרויות מחקר רבות לאין ערוך בין קבוצות אין סופיות, מאשר שיטת המיפוי המקובלת, לדוגמא: Let @ be |N|-Successor
If A = @ and B = @-2^@, then A > B by 2^@, where both A and B are collections of infinitely many elements. Also 3^@ > 2^@ > @ > @-1 etc. So as we can see, in my universe I have both non-finite collections and unique arithmetic between non-finite collections, which its result is always a non-finite collection. My results are richer than the Cantorean transfinite universe, for example: By Cantor aleph0 = aleph0+1 , by me @+1 > @ . By Cantor aleph0<2^aleph0 , by me @<2^@ . By Cantor aleph0-2^aleph0 is undefined, by me @-2^@ < @ . By Cantor 3^aleph0 = 2^aleph0 > aleph0 and aleph0-1 is problematic. By me 3^@ > 2^@ > @ > @-1 etc. |{{1,1,…}+1, 1,1,1}| > |{{1,1,…}+1}| by |{1,1,1}|. |{{1,1,…}+1,{1,1,…}+1}| = |{{1},{1}}|•@ > |{{1,1,…}+1}| by |{1}|•@ and |{{{1,1,…}+1, 1,1,…}+1}| = |{{1},1}|•@ > |{{1,1,…}+1}| by |{1}|•@ but they have different internal structures ( {{1},{1}} and {{1},1} ). For further information, please read http://www.geocities.com/complementarytheory/Success... . |
חזרה לעמוד הראשי |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |