![]() |
|
![]() |
||
|
||||
![]() |
אז ההוכחה שלי היא *כן* הוכחה פורמלית ב- ZFC לטענה "אם ZFC עקבית וגם הפתירות של f לא כריעה אז אין ל- f פתרון". בדיוק כמו שהמשפט של מטיישביץ', בהקשר הזה, אומר "אם ZFC עקבית אז יש משוואות לא כריעות". הרבה יותר טוב. |
![]() |
![]() |
![]() |
![]() |
|
![]() |
||
|
||||
![]() |
אני קצת מבולבל. הרבה יותר טוב ממה...? את הטענה "אם ZFC עקבית וגם הפתירות של f לא כריעה אז אין ל- f פתרון" אפשר לפשט למקרה הפרטי "אם ZFC לא מוכיחה של-f יש פתרון, אז ל-f אין פתרון". לא צריך את עקביות ZFC, אלא רק את העובדה שאם למשוואה דיופנטית יש פתרון אז ZFC מוכיחה זאת; זה נכון גם ל-PA, ובאותה מידה אפשר להוכיח ב-PA "אם PA לא מוכיחה ש-f פתירה, אז f אינה פתירה". (סייג כללי: אאל"ט). אולי נחזור אחורה: התחלנו מהאבחנה שיש טענות אריתמטיות חוץ מעקביות ZFC שהן לא כריעות ב-ZFC; יש אפילו משוואות דיופנטיות כאלה - וקיומן הוא, נדמה לי, יותר מעניין מהוכחה מסוג זה למשוואה ספציפית. בעקבות זאת אני ניסיתי לטעון שהזיהוי של "יכיח-ב-ZFC" עם "נכון" הוא ממילא לא סביר, והוא נשאר לא סביר גם כשנזכרים שיש גם טענות יותר מורכבות (לא פאי-1-0) שאינן יכיחות. לגבי אלה, גם אני מודה שאנחנו נשארים די תקועים לגבי בירור המצב לאשורו; אבל אני בכל-זאת סבור שיש כזה מצב לאשורו, ואני מנסה להבין מדוע אתה סבור(?) שאין כזה. |
![]() |
![]() |
![]() |
![]() |
|
![]() |
||
|
||||
![]() |
"אם ZFC עקבית וגם הפתירות של f לא כריעה אז אין ל- f פתרון". זו לא סתירה? |
![]() |
![]() |
![]() |
![]() |
|
![]() |
||
|
||||
![]() |
למה סתירה? (עקבית = המערכת לא מוכיחה ששה דברים בלתי אפשריים לפני ארוחת הבוקר. שלמה = המערכת מצליחה להחליט לגבי כל טענה. אנחנו מאמינים ש- ZFC עקבית, ויודעים שהיא לא שלמה). |
![]() |
![]() |
![]() |
![]() |
|
![]() |
||
|
||||
![]() |
זה מזכיר את הדיאלוג המעצבן שהיה לי עם אלון לפני כמה ימים: אם הגעת למסקנה שאין ל- f פתרון, איך אתה יכול להגיד באותה נשימה שהפתירות של f אינה כריעה? הרי הכרעת. | ![]() |
![]() |
![]() |
![]() |
|
![]() |
||
|
||||
![]() |
הבעיה נפתרת אם מדברים במשפטים שלמים. אם מניחים ש- ZFC עקבית, אז הפתירות של f אינה כריעה במסגרת ZFC (כלומר, אין הוכחה ב- ZFC לפתירות של f וגם לא לאי-הפתירות). מכאן אני מסיק ש*אם מניחים ש- ZFC עקבית*, אז f אינה פתירה. לטענה *הזו*, יש הוכחה במסגרת ZFC (אלון מציע ניסוח אחר, אבל הם שקולים). לטענה "f אינה פתירה" אין הוכחה ב- ZFC (כמו שאין הוכחה לכך ש- ZFC עקבית). | ![]() |
![]() |
![]() |
![]() |
|
![]() |
||
|
||||
![]() |
כן, [אני חושב ש]את זה הבנתי אחרי מאמציו הבלתי נלאים של אלון, רק הסברתי את שאלתה של האלמונית לגבי הסתירה כביכול. | ![]() |
![]() |
![]() |
![]() |
|
![]() |
||
|
||||
![]() |
ראה תגובה 320138 | ![]() |
![]() |
![]() |
חזרה לעמוד הראשי | ![]() |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
![]() |
© כל הזכויות שמורות |