|
||||
|
||||
בספרייה היו, אכן, הרבה יותר אי רציונליים מרציונליים. כפי שאמרתי לך, לא ראיתי בשום מקום שאלון הגביל את ''שוויון ההזדמנויות'' שלו בין הרציונליים לאי-רציונליים רק לאותם אי רציונליים שניתנים לחישוב. צריך לחשב גדלים של חללים, כמויות של חומרים, אורכים של כבישים... הרבה מאוד דברים, נראה לי. |
|
||||
|
||||
טוב, כל החישובים הללו הם של גדלים שמקורם בנתונים אמפיריים (ממדי החלל, הכמויות הראשוניות של החומרים, אורכים של מקטעים שונים בכביש), ומכיוון שאנחנו לא מודדים גדלים אי רציונליים, מן הסתם לא נתחיל עם מספרים אי רציונליים. מצד שני, אלון דיבר על חישוב של טרנספורם פורייה וכדומה, שבהחלט משתמש במספרים אי רציונליים בתור נקודת מוצא אנליטית. אני לא מבין גדול בתחום ולא יודע מה השימושים של טרנספורם פורייה, אבל שמעתי שמועה שהוא נפוץ בתחומים זניחים כמו הנדסת חשמל, למשל. |
|
||||
|
||||
וכנראה גם בתחומים זניחים לא פחות של השמיעה, מה שאומר שאפילו החתול שלי יודע לעשות חישובים כאלה! |
|
||||
|
||||
נאה. אבל כיוון שגם חישובי טרספורם פוריה (יהיה אשר יהיה) מחושבים, כפי הנראה לצרכים אמפיריים, הרי שמספרים הרלוונטיים לא יופיעו בו כמספרים אי-רציונליים - אלא כקירובים רציונליים שלהם. |
|
||||
|
||||
בחישוב טרנספורם פורייה, עד כמה שאני למדתי, מופיע לעתים קרובות פאי בתור קבוע נירמול, לא בתור חלק מנתוני הפונקציה שאת הטרנספורם שלה מחשבים. לכן החישוב הבסיסי כבר מסתמך על פאי. |
|
||||
|
||||
מה זה "קבוע נירמול"? |
|
||||
|
||||
זה טיפה טכני ואני לא בקיא לחלוטין בפרטים. הרעיון הבסיסי בטרנספורם פורייה הוא לייצג פונקציה באמצעות פונקציות "בסיסיות" - כאלו שמהוות מה שמכונה בסיס אורתונורמלי. בשביל זה צריך שהנורמה (האורך) של הפונקציות הללו (שהן איברים במרחב וקטורי) תהיה 1. לכן כופלים אותן בקבוע שמבטיח את האורך הזה. נראה לי שכאן העניין מוסבר יותר טוב משאני יכול להסביר: |
חזרה לעמוד הראשי |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |