|
||||
|
||||
למה העובי מפריע לך בצביעה אבל השטח/נפח לא מפריע לך במילוי? |
|
||||
|
||||
בדיוק להיפך (ואני רואה שהנקודה שלי לא הובנה) - מה ש*כן* מפריע לי זה שאנחנו לא מיישמים את אותם כללים על המילוי ועל הציפוי. כפי שניסיתי (לא בהצלחה) לומר בתגובה קודמת, אצלי האנלוגיה לעובי הציפוי היא צפיפות המילוי. כדי ליישם את אותם כללים על שניהם יש לבחור בין שני תסריטים: א. בשניהם הצפיפות/עובי אחידים בכל המרחב שאנחנו מנסים למלא/לכסות. ב. בשניהם מותר לשנות את הצפיפות/עובי כפונקציה (כלשהיא) של המיקום באותו מרחב. אם בוחרים ב-א' - צפיפות אחידה ועובי כיסוי אחיד - ה'פרדוקס'1 האינטואיטיבי תקף לגמרי: ניתן למלא את כל הספירות בצבע/נוזל בצפיפות אחידה, עם כמות סופית של צבע, ולא ניתן לצבוע או לכסות את שטחי הספירות בכמות סופית של צבע. אם בוחרים ב-ב' - ה'פרדוקס' נעלם כפי שהוסבר יפה למעלה במספר אופנים, כי עכשיו כן ניתן לצבוע או לכסות את שטחי הספירות בכמות סופית של צבע. אבל מהצד שני, לא רק שניתן למלא את כל הספירות בכמות סופית של צבע: ניתן למלא את כל המרחב התלת מימדי האינסופי כולו בכמות סופית של צבע2. רוצה לומר - בכללי המשחק מסוג ב', כל ההדגמה של ספירות, חצוצרות, שטחים ונפחים הופכת ללא מעניינת, לא מפתיעה, וטריוויאלית: כי בכללים האלה כל משטח(יריעה/נפח/וואטאבר) תמיד אפשר למלא/לצבוע בכמות סופית של צבע, אז למה לטרוח בכלל לנסח את כל המבנים המורכבים האלה כדי לומר משהו? זה משחק כדורסל שבו כל מי זורק כדור קולע סל. את מי זה מעניין? ולכן, לדעתי, אם לא רוצים להפוך את כל האנלוגיה למשעממת לחלוטין, חייבים לדבוק בכללי משחק א' לשני התחומים המדוברים. משחק כדורסל שבו רק צד אחד קולע סל בכל זריקה הרבה פחות הוגן (והרבה יותר משעמם) משילוב טרנסג'נדריות בספורט נשים. ולבסוף - כאן אני פוסע בשדה מוקשים, כי מי שלא מכיר זה יעבור מעליו ומי שמכיר בטח יחשוף את הבורות החלודה שלי מרחוק - כל הטיעון הזה מזכיר לי קצת את ההבדל בין אינטגרלי רימן לאינטגרל לבג. אצל רימן, כל dx שקול לרעהו, וכשאתה סוכם הסרגל שלך לא משתנה (כמו העובי/צפיפות של כללי משחק א'). באינטגרל לבג, כמדומני (שיעול שיעול), אינטרוול האינטגרציה עצמו משתנה על פי פונקציה כלשהי, מה שבאמת מאפשר להגיע לתוצאות מאד מוזרות. וזה קצת שקול למשחק מסוג ב'. 1 זאת מילה מבלבלת, כי זה לא פרדוקס, אבל זו ה"הפתעה" בכל הדוגמה הזו והסיבה לקיומה. 2 הגדר פונקציה על כל המרחב שהאינטגרל שלה סופי אבל היא תמיד גדולה מאפס (למשל גאוסיאן כמדומני), ושנה את 'צפיפות' הצבע בכל נקודה במרחב בדיוק לפי הפונקציה הזו. |
|
||||
|
||||
ברשותך, בוא נתרכז רק בעניין מגדל העיגולים, כלומר המרחבים שמעניינים אותנו הם בעלי מימד אחד או שניים. ראינו בקלות שמגדל העיגולים הוא יצור בעל היקף אינסופי ושטח סופי, וזה לכשלעצמו לא נראה בעייתי, לפחות לי. כלומר, אני חי בשלום עם כך שניתן להגדיל היקף של צורות בלי להגדיל את השטח שלהן. העובדה שאי אפשר לצבוע משטח אינסופי בשכבת צבע בעובי אחיד שאינו אפס היא טריויאלית, ואם "האנלוגיה לעובי הציפוי היא צפיפות המילוי" המעבר מגודל סופי במימד מסויים לגודל אינסופי במרחב אחר הוא זה שצריך להיות מעניין או מטריד, אבל הוא (בעיני) חסר כל עניין מיוחד. מה שהפריע לי (ולטרחן בפוטנציה ומן הסתם להרבה אחרים) היה שלכאורה ע"י מילוי שטח המעגלים בצבע אתה בהכרח צובע גם את ההיקף שלהם (מבפנים, אבל השפה היא בעובי אפס אז מה זה משנה?) כי הצביעה מגיעה עד השפה, וזה סותר את ה"עובדה" המוטעית לפיה לא ניתן לצבוע משטח אינסופי1. זה שפתרון התעלומה עדיין משאיר הבדל בין המרחבים השונים לא נראה לי מעניין במיוחד, אבל מובן ש-YMMV. (אני משאיר לאחרים, אם יטרחו, להתעסק עם אינטגרלי לבג. בינתיים אני יכול להציע למעוניינים הוכחה חביבה לכך ש π=4 או, למי שמעדיף, ש 2 = 2√. הפתרון טריויאלי ומפתיע בעת ובעונה אחת, כשההפתעה היא בעיקר בכך שאף פעם לא חשבתי על זה ולא נתקלתי בזה (אה, כמה זה מתבקש בתור הערה/הארה צדדית כשמלמדים את משפט פיתגורס, וכמה אני מצטער שלא ידעתי על זה בשעתי כדי להתקיל את המורה שלי למתמטיקה בתיכון. היה יכול להיות שמח!). ______________ 1- אני משער שמקור הבלבול הוא שהמחשבה האינטאיטיבית אומרת שאם המשטח שעוביו אפס הוא אינסופי, כל שכבה שעוביה יותר מאפס "גדולה" ממנו ולכן אינסופית אף היא. כאמור, טעות פשוטה שנובעת מעירוב מרחבים ממימד שונה. |
|
||||
|
||||
(אכן הוכחה משעשעת. היית מצפה ממורה סביר למתימטיקה בתיכון לא להיבהל מהוכחות שכאלה). ועוד אסוציאציות מהתואר הראשון שעולות אצלי, בהשראת "מילוי שטח המעגל צובע את ההיקף מבפנים": מסתבר, שכשמגדירים כדורים במימדים הולכים וגדלים1, נפח הכדור הולך ומתרכז סביב שפת הכדור, כך שבמימדים ששואפים לאינסוף *כל* נפח הכדור נמצא במעטפת. 1 מימד 1 - קו, שניים - מעגל, שלושה - כדור תלת מימדי וכן הלאה. |
|
||||
|
||||
תתפלאי. "היית מצפה ממורה סביר למתימטיקה בתיכון" - מישהו שעבד איתי פעם היה נשוי למורָה למתמטיקה בתיכון (לא ביררתי לכמה יחידות היא מכינה את תלמידיה), ודי הופתעתי לגלות שהיא לא הכירה את המשפט האחרון של פרמה (זאת לאחר שבפעם קודמת הופתעתי מכך שמישהו אחר, בעל דוקטורט במתמטיקה שעבד בתור מתמטיקאי, לא הכיר אותו. אמרתי לו בצחוק שאני זקוק להוכחה של העניין ההוא עם a^n + b^n = c^n והוא ענה לי במלוא הרצינות שהוא יחשוב על זה). הרעיון שעקום יכול להיות קרוב כרצונך לעקום אחר (בהגדרה סבירה של "קרוב" לפיה השטח הכלוא בין שני הקוים קטן כרצונך) ובה בעת להיות בעל אורך שונה נראה לך אינטואיטיבי? לי ממש לא. |
|
||||
|
||||
גם אם הרעיון לא לגמרי אינטואיטיבי, קצת חשיבה תגלה מלא דוגמאות הפוכות. למשל: אותו עקום כשמציירים אותו הלוך וחזור. מה זה משנה כמה קרובים ההלוך והחזור הזה, ברור שאורכו של העקום כפול. דוגמה אחרת: כשילדים מציירים, יש כאלה שממלאים מלבן ארוך בקו אחד ארוך, ויש כאלה שמקשקשים כמעט במאונך לו לכל אורך הדרך. ברור שהקשקוש ארוך יותר. או מעולמם של אלה שנהגו לשרבט צורות במחברות משבצות בשיעורים משעממים - אלו גילו די מהר שמהלך המדרגות (שהוזכר בסרטון) מקרב אותך אבל לא מקצר את הדרך. אבל נמשיך לאסוציאציות - כידוע העקום השני לא רק שאורכו יכול להיות שונה - הוא יכול להיות פי אינסוף יותר ארוך מהראשון, אם נקרא לו פרקטל (כזה או אחר). אבל כזכור לי גם מפעם, דוקא בענייני הפרקטלים היתה אפשרות להגדיר אכן את הפרקטל כצורה בעלת מימד שבור - נניח 1.51. ז"א - אם קצת ניזכר בשטח הצבוע - הטענה היא שפרקטל יכול להיות "כל כך יותר ארוך מקו ישר", שהוא כבר תופס במרחב משהו שהוא בין קו למישור. 1 היה שם איזה לוג, לא משנה. ___ וגילוי נאות - לא ברור לי בכלל למה שמורה למתימטיקה בתיכון תכיר את משפט פרמה. הוא לא קשור לשום נושא בחומר הנלמד. נכון שזו פרפראה נחמדה בתרבות הפופולרית, בעיקר אחרי כמה ספרים בנושא. אז מה. |
|
||||
|
||||
__________ לתומי שחשבתי שמי שהולך ללמוד מתמטיקה באוניברסיטה התעניין בנושא במידה שמבטיחה לפחות היכרות עם המשפט של פרמה, וללא ספק טעיתי. |
|
||||
|
||||
You're one of today's lucky 10,000 |
|
||||
|
||||
מהקישור: US birth rate ~ 4,000,000 אבל Israeli birth rate of mathematicians ~ 4 ואידך זיל. |
|
||||
|
||||
אני גאה לספר שעוד כשהייתי נער, גיליתי (לגמרי בעצמי) את ה"פרדוקס" של המדרגות שהולכות ונצמדות ליתר של משולש יש"ז, אבל האורך הכולל שלהן נשאר קבוע, ולא מתכנס לאורך היתר. זה אכן הפתיע אותי, אבל מזמן למדתי לחיות בשלום עם העובדה הזאת. קבל "פרדוקס" דומה בהסתברות: על השולחן מונח שקל אחד. מטילים שוב ושוב קוביה, וכל עוד לא התקבל "עץ", מכפילים אחרי כל הטלה את הסכום שעל השולחן. מיד אחרי שמתקבל לראשונה "עץ" מנקים את השולחן, והוא נשאר נקי למשך כל אינסוף ההטלות שאחרי רגע זה. בוא נקרא X_n לסכום שעל השולחן אחרי ההטלה ה-n. הסכום הזה הוא 2 בחזקת n אם כל n ההטלות הראשונות היו "פלי", דבר שקורה בהסתברות חצי בחזקת n, אחרת הוא 0. לכן התוחלת של X_n היא 1. מהו הגבול של סדרת התוחלות? זה הגבול של הסדרה הקבועה 1, שהוא כמובן 1. מצד שני, בהסתברות 1, מתישהו יתקבל "עץ", כלומר הגבול של סדרת ה-X_n הוא 0, והתוחלת של 0 היא 0. כלומר: התוחלת של הגבול שונה מהגבול של התוחלת. שלוש הערות: 1. התהליך שתיארתי הוא בדיוק אסטרטגיית ההימורים שנקראת "מרטינגייל", שממנה נגזר מונח מתמטי יותר כללי באותו השם. 2. צריך להיות זהירים כשמדברים על ההתכנסות של X_n, כי X_n הוא מה שנקרא "משתנה מקרי", ויש כמה דרכים (לא שקולות) להגדיר התכנסות של סדרת משתנים מקריים. בסיפור שלנו, X_n מתכנס ל-0 בשלושה מתוך ארבעת המובנים ה"מקובלים" להתכנסות. 3. הדמיון בין הבעיה הגיאומטרית לבעיה ההסתברותית הוא שבשני המקרים יש לנו סדרת אובייקטים (עקומים מזגזגים בגיאומטריה, סכומי כסף על השולחן בהסתברות) שמתכנסת במובן מסוים לאובייקט נוסף (יתר המשולש, המספר 0), וכן פעולה שאפשר לבצע על האובייקטים (מדידת אורך, חישוב תוחלת). בשני המקרים הגבול של סדרת תוצאות הפעולה על סדרת האובייקטים הוא לא אותו דבר כמו תוצאת הפעולה על גבול סדרת האובייקטים. |
|
||||
|
||||
מטילים שוב ושוב מטבע, כמובן, ולא קוביה. אוף. |
|
||||
|
||||
(קוביה דו-ממדית) |
|
||||
|
||||
(דו-צידית) |
|
||||
|
||||
שזה בעצם קוביה חד מימדית. |
|
||||
|
||||
קוביה מעץ. |
|
||||
|
||||
העניין עם עקומים קרובים כרצוננו שהם בעלי אורך שונה אינו מהווה בעיה של ממש, הוא מפתיע רק ממבט ראשון. כאשר זוכרים את העובדה (שבמקרה הוזכרה לאחרונה) שאפשר להגדיל היקף של עקום סגור לכל גודל בלי שהשטח יגדל, ברור שהשטח שבין שני העקומים אינו מהווה מגבלה על האורך של אף אחד מהם. קו מזוגזג בזיגזוגים צרים מאד יכול לספק כל אורך שתרצה ובה בעת לתחום שטח קטן ככל שתרצה עם הקו השני, והפונז נתן דוגמא לאפשרות דומה. גם אם מגדירים את הקירבה ביו הקוים לא ע"י השטח אלא ע"י המרחק המכסימלי בין שתי נקודות מתאימות על העקומים (בהתאמה חח"ע ועל כלשהי) אין בעיה לראות שזה לא בהכרח מגביל את האורך, כפי שאלכסון הריבוע מראה. על ההימורים בשיטה הזאת דיברנו רבות באייל, אולי בדיון הזה עצמו, כפי שאתה בטח זוכר, כולל השאלה מתי לברוח מהימור שבו ניחוש נכון מזכה אותך בפי 3 מהסכום עליו הימרת (בלי להכנס לשיקולי "תועלת"). אגב, עד היום חשבתי שמרטינגייל הוא איזו הרחבה של אינטגרל ולא ידעתי שהוא קשור להסתברות או סטטיסטיקה. |
|
||||
|
||||
עוד הערה שאני חייב להוסיף על הנושא: התכונה הזו, שהתוחלת של הגבול שונה מהגבול של התוחלת, היא בעצם אי רציפות של פונקציית התוחלת, ביחס להגדרה הזו של גבול של משתנים מקריים. על מנת להבהיר את הקשר: רציפות של פונקציה ("רגילה" מהמספרים הממשיים לעצמם) היא בדיוק התכונה שהפונקציה מופעלת על גבול של סדרה מתכנסת שווה לגבול ההפעלה של הפונקציה על איברי הסדרה. |
|
||||
|
||||
סליחה שאני מתפרץ לשדה מוקשים: זה באמת לא ההבדל בין אינטדרל רימן ללבג. ההבדל העיקרי (בפישוט ניכר וחוסר דיוק מסוים) הוא שבלבג אנחנו לוקחים dy במקום dx, כלומר מחלקים את הטווח ולא את התחום לקטעים קטנים ומסתכלים מה גודל המקור של כל קטע. כמובן שהמקור הוא לא בהכרח קטע, כך שצריך קודם כל להגדיר מה הוא אורך של קבוצה כללית. האורך הזה נקרא מידת לבג. אחרי שעושים זאת, מקבלים אינטגרל שההגדרה שלו מסובכת, אבל יש לו תכונות פחות מוזרות מאשר לאינטגרל רימן. למשל, אם סדרת פונקציות חסומות מתכנסת נקודתית, אז סדרת האינטגרלים שלהן מתכנסת לאינטגרל של הפונקציה הגבולית (שבהכרח קיים). |
|
||||
|
||||
ה-dy שלך הוא בערך מה שהתכוונתי ב"אינטרוול האינטגרציה עצמו משתנה על פי פונקציה כלשהי", שכן y היא פונקציה של x, אבל זה לא באמת משנה. אני סומך על כל מה שתגיד בנושא בעיניים עצומות. |
|
||||
|
||||
ומה העמדה שלך לגבי מה שאורי יגיד בעיניים פקוחות? |
|
||||
|
||||
קל וחומר. אבל אם כבר שאלת - אתה מזכיר לי סיפור מיתולוגי מהתואר הראשון שלי, שבו קיבלנו תרגיל בית לחשב זרימה של אויר סביב כנף או משהו כזה, מהסוג שדורש כמה עמודי אינטגרלים מסובכים כדי לפתור. ישבנו כל החוכמולוגים וטחנו, ולא כל כך הצלחנו (או שאולי מישהו הצליח אבל לא היה בטוח שהצליח). ככלות כל הקיצים, התקשר אחד מהסטודנטים לאבא שלו, המאד מוכשר, וזה פתר את התרגיל בטלפון בחמש דקות בעיניים עצומות1. A very humbling experience indeed. 1 האב המוכשר הזה איבד את ראייתו שנים לפני כן.
|
|
||||
|
||||
זאת היתה כמובן פראפראזה על "תסגור את החלון, קר בחוץ" - "ואם אסגור אותו יהיה חם בחוץ?" אה, אם כבר מדברים על אוירודינמיקה, יש משהו שמטריד אותי: ההסבר שמופיע במליון מקומות בקשר ליצירת העילוי ע"י פרופיל הכנף מניח, מסיבה שאני לא מבין, ששתי מולקולות של אויר שנפרדות זו מזו בשפת ההתקפה של הכנף צריכות להפגש שוב בשפת הזרימה (לכן זאת שעוברת את המסלול הארוך מעל הכנף צריכה לנוע יותר מהר מאחותה בצד התחתון וכך נוצרים הפרשי לחצים בזכותו של ברנולי). למה, בעצם? 1 למדת עם אלון עמית? |
|
||||
|
||||
לשאלתך בנושא הכנף, זה ממש לא נכון. אין שום סיבה שמולקולות שנפרדו בשפה הקדמית של הכנף יפגשו בשפה האחורית שלה. לו זה היה נכון, מטוסים לא היו יכולים לטוס הפוך (והם יכולים). יותר מזה, למטוסים הראשונים היו כנפיים שטוחות ולא מעוגלות. האפקט המרכזי שיוצר עילוי הוא לא חוק ברנולי (אם כי גם הוא תורם לעילוי) אלא הזווית שבין הכנף ובין כיוון התנועה של המטוס, שדוחף את האוויר למטה (תחשוב על עפיפון שעומד מול הרוח). |
|
||||
|
||||
התשובה היא כנראה שניהם - גם ברנולי וגם זווית ההתקפה. אבל אכן ברנולי לא נוצר כי ''המולקולות צריכות להיפגש בשפת הזרימה של הכנף''. |
|
||||
|
||||
החוכמה המקובלת[*] היא שהעילוי נוצר גם כתוצאה מזוית המשטחים (עם החסרון הברור של גרר רציני, שאינו מפריע לעפיפון אבל למטוס הוא כמובן בעייתי מאד) - וזה מה שמאפשר לטוס הפוך ולעשות תעלולים אחרים ע"י משחק עם משטחי העילוי, אבל בהחלט גם על ברנולי קשישא. מה שחסר לי עדיין הוא הסבר ל"(אם כי גם הוא תורם לעילוי)" כלומר למה יש בכלל הבדל במהירות האויר מעל ומתחת לכנף, כאשר אנחנו מסכימים שההסבר המקובל אינו נכון. _____________ 1- במובן שהיא מופיעה במליון מקומות, וחיה במוחי מאז הפעילות הראשונה בקלוב התעופה, לפני כשישים שנה. |
|
||||
|
||||
למיטב ידיעתי, אפקט ברנולי הוא לא הכי משמעותי מבין האפקטים שתורמים לעילוי. הערך Lift (force) [Wikipedia] מפורט מאוד ומסביר על התרומות השונות ועל הסיבות להבדלים במהירות האוויר מעל ומתחת לכנף. |
|
||||
|
||||
אפקט ברנולי הוא כנראה הסבר קצת פשטני של מערכת מאד מורכבת, אבל הוא מכיל גרעין של אמת. גם לפי הויקיפדיה שקישרת, הפרשי הלחצים (והמהירויות) בין שכבות האויר שמעל לכנף לאלה שמתחתיה הם גורם משמעותי מאוד בעילוי הכנף1. בפנים נכנסות תופעות יותר מסובכות, כמו למשל שנוצרת שכבת גבול של אויר סביב הכנף, שבה יש זרימה הרבה יותר איטית מאשר יותר רחוק מהכנף. ובתור דוגמאת נגד לתיזת "רק זוית ההתקפה עושה עילוי", אפשר להביא את תופעת ההזדקרות - ברגע ששכבת הגבול 'ניתקת' מהכנף, העילוי קורס לכמעט אפס והמטוס צולל, וכל זה למרות שזוית ההתקפה עדיין סבירה לחלוטין מבחינת אפקט העילוי-עקב-לוח-שטוח. לכן כל הסבר שמניח שעיקר העילוי הוא עקב זוית התקפה ולא עקב צורת הכנף והזרימה סביבה, חוטא למציאות. 1 הויקיפדיה אפילו טורחת לציין שמהירות האויר מעל הכנף *גבוהה* יותר מהנגזר מההסבר הפשטני של "מולקולות האוויר רוצות להיפגש מאחורי הכנף". אבל זה רק מגביר את אפקט ברנולי, לא מקטין אותו. |
|
||||
|
||||
תודה, חשבתי לחסוך לעצמי את זה... |
|
||||
|
||||
1 ניסיתי לא להיות ברור מדי, אז עכשיו אתה עושה לי אאוטינג? |
חזרה לעמוד הראשי | המאמר המלא |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |