בתשובה לאייל אחר, 22/09/15 18:01
יציבות ואי-יציבות בלולאה 663886
לדעתי, הייצוגים הוויזואליים . ו-__ אינם שפה פרטית אלא משותפים לכל השפות הוורבליות (ובעברית הם מכונים "נקודה" ו-"קו" בהתאמה).

הגדרתי את "נקודה" ו-"קו" כביטויים שונים של אורך, באופן הבא: .(אורך=0), __(אורך>0), ובזה משמש האורך כגורם (או מושג) משותף בין הביטויים השונים, שהם "נקודה" ו-"קו".

אתה כותב: "אתה יכול לתת דוגמאטת קונקרטיות, לאיזה ביטויים יש גורם משותף אפס? לאיזה ביטויים יש גורם משותף 0.14? לאיזה ביטויים יש גורם משותף 32?"

הדוגמא הקונקרטית הינה לא ערך מספרי מסויים המשוייך לנקודה או קו בהרכב כגון __.___._.______ , אלא שימושו של אורך כמושג משותף לנקודה(אורך=0) ו-קו(אורך>0).

אתה כותב: "אני לא הולך לשאול מה זה: "רמת המשפטים במערכת מתמטית נתונה" בגלל שאני עדיין מנסה להבין את שאר השאלות ששאלתי."

אקסיומות הינן "אמיתות" במערכת מתמטית עיקבית נתונה אשר אינן זקוקות להוכחה, כאשר משפט נתון במערכת זקוק להוכחה ל-"אמיתותו".

במובן זה "אמיתות" האקסיומות הינה הסיבה ל-"אמיתות" המשפט, ומצב זה מכונה סיבתיות-עולה.

בא גדל והראה כי קיימת מערכת אקסיומות (החזקה דייה לעסוק באריתמטיקה) שבה יש משפטי "אמת" אשר הוכחת "אמיתותם" אינה ניתנת להכרעה ע"י מערכת האקסיומות.

הניסיון להוסיף אקסיומות נוספות למערכת כנ"ל אינו משנה את המצב, קרי, תמיד יהיו במערכת אקסיומות (החזקה דייה לעסוק באריתמטיקה) משפטי "אמת" אשר הוכחת "אמיתותם" אינה ניתנת להכרעה ע"י מערכת האקסיומות.

מצב זה מכונה בפי הופשטטר ובפי "סיבתיות יורדת", שעל-פיה, כאמור לעיל, יש משפטי "אמת" אשר הוכחת "אמיתותם" אינה ניתנת להכרעה ע"י מערכת האקסיומות, או במילים אחרות, ה"אמת" ברמת המשפט הינה הסיבה ל"אמיתות" האקסיומות.

גזרתי שקילות בין המתואר לעיל, לבין היחסים בין נקודה (מייצגת את רמת האקסיומות) לקו (מייצג את רמת המשפט).
יציבות ואי-יציבות בלולאה 663888
אתה מתכוון למושגים הגיאומטריים: "נקודה", "קו" ו"אורך"?! אם כן, מאד (מאד) יקל עלי אם פשוט תכתוב את המילים: נקודה, קו ואורך(בלי מרכאות, בלי סימונים, בלי דיאגרמות... זה בסדר, אני יודע לקרוא).

בו נראה אם אני אצליח לנסח בעברית את מה שכתבת ושאני חושב שהבנתי:
אורך הוא מאפיין מספרי חיובי של קו ונקודה, כשהקו מתאפיין באורך גדול מאפס ואילו לנקודה יש אורך אפס.

משפטי אמת שנכונותם נובעת מהאקסיומות של המערכת נקראים משפטים בעלי "סיבתיות-עולה", משפטי אמת שנכונותם לא נובעת מהאקסיומות של המערכת נקראים בעלי "סיבתיות יורדת".

הרבה פחות מילים, יותר נכון, בעברית, ולדעתי הרבה הרבה יותר מובן. האם פספסתי משהו?

הדברים שעדיין לא הבנתי בתגובה הזאת (לפני שנתחיל ללכת אחורה):
* מה זה אומר "רמת המשפטים במערכת מתמטית נתונה"
* איפה אתה רואה גזירה בין היחסיסים בין נקודה לקו ליחסים בין אקסיומות למשפט?
יציבות ואי-יציבות בלולאה 663891
איני מתכוון רק למושגים קו ונקודה בגיאומטריה אלא משתמש במושג האורך ובביטויו כקו ונקודה, כהכללה למושג של גורם משותף המקשר בין ביטויו השונים, אשר אף אחד מהם לבדו אינו מגדיר במלואו את הגורם המשותף.

מתוך תובנה זו, אוסף של אורכי 0 אינו מהווה אורך>0, ואורך>0 אינו ניתן לרדוקציה לאורך=0 (ועדיין להחשב כאורך>0).

תובנה זו תקיפה, לדעתי, הן בגיאומטריה, הן באנליזת הישר הממשי, והן ביחס הסיבתיות שבין אקסיומות למשפטים, ואם אינך מסכים איתה, אנא פרט את תובנתך בנושא.

אתה כותב: "משפטי אמת שנכונותם נובעת מהאקסיומות של המערכת נקראים משפטים בעלי "סיבתיות-עולה", משפטי אמת שנכונותם לא נובעת מהאקסיומות של המערכת נקראים בעלי "סיבתיות יורדת"."

בשתי ההגדרות השתמשת בהנחה סמויה והיא שרמת האקסיומות נמוכה מרמת המשפטים ורמת המשפטים גבוהה מרמת האקסיומות, אחרת לא יכול היית להשתמש בביטויים "סיבתיות-עולה" או "סיבתיות-יורדת" מלכתחילה.

מכיוון שהשתמשת במושגים "עולה" ו-"יורדת" כהנחה סמויה, אין זה מפתיע שאתה שואל את השאלות הבאות:

"* מה זה אומר "רמת המשפטים במערכת מתמטית נתונה"
* איפה אתה רואה גזירה בין היחסיסים בין נקודה לקו ליחסים בין אקסיומות למשפט?"

נסה נא לנסח מחדש את הגדרתך ללא הנחות סמויות, ולדעתי, יוביל הדבר למענה לשתי השאלות הנ"ל.
יציבות ואי-יציבות בלולאה 663892
כמו-כן, הרשה לי תיקון להגדרה שלך:

משפטים שאמיתותם מוכחת מהאקסיומות של מערכת נתונה נקראים משפטים בעלי "סיבתיות-עולה", משפטים שאמיתותם אינה מוכחת מהאקסיומות של מערכת נתונה, נקראים בעלי "סיבתיות יורדת".

גם בהגדרה מתוקנת זו קיימת ההנחה הסמויה, שהוזכרה לעיל.
יציבות ואי-יציבות בלולאה 663894
ולתיקון הקודם אוסיף תיקון נוסף:

מערכת שבה אמיתותם של כל המשפטים מוכחת ע"י אקסיומות המערכת, נקראת מערכת בעלת סיבתיות-עולה.

מתוך ההגדרה הנ"ל ניתן להבין כי סיבתיות-יורדת קיימת במערכת, שבה לא מוכחת אמיתותם של כל משפטי המערכת (על אף היותם משפטי-אמת, כפי שהראה גדל).

גם כאן לא נפתרה בעיית ההנחה הסמוייה.
יציבות ואי-יציבות בלולאה 663895
"איני מתכוון רק למושגים קו ונקודה בגיאומטריה אלא משתמש במושג האורך ובביטויו כקו ונקודה, כהכללה למושג של גורם משותף המקשר בין ביטויו השונים, אשר אף אחד מהם לבדו אינו מגדיר במלואו את הגורם המשותף." לא הבנתי. זאת סתם הגדרה של "מאפיין". יש עשרות כאלה לכל קבוצה של מושגים. נגיד, את החפצים הממשיים מאפיין משקל, נפח, מקום, תנע, צורה, צבע... לכל חפץ ממשי יש משקל, אבל המשקל לא מגדיר אף חפץ ממשי. לכל המספרים יש חצי, אבל חצי לא מגדיר אף מספר. מה מיוחד בנקודה, קו ואורך שהדליק אותך כל כך? למה הם מעניינים במובן הזה?

"מתוך תובנה זו, אוסף של אורכי 0 אינו מהווה אורך>0, ואורך>0 אינו ניתן לרדוקציה לאורך=0 (ועדיין להחשב כאורך>0)." לא. סליחה, זה פשוט לא נובע מה"תובנה" הזאת.

"תובנה זו תקיפה, לדעתי, הן בגיאומטריה, הן באנליזת הישר הממשי, והן ביחס הסיבתיות שבין אקסיומות למשפטים, ואם אינך מסכים איתה, אנא פרט את תובנתך בנושא." אני לא מסכים. אין לי שום "תובנה" בנושא, אני לא מבין איך אפשר למצוא "תובנה" מדבר כל כך טריויאלי, וגם אם אפשר היה, לא ברור לי איך הוצאת דווקא את ה"תובנה" שהוצאת.

"בשתי ההגדרות השתמשת בהנחה סמויה והיא שרמת האקסיומות נמוכה מרמת המשפטים ורמת המשפטים גבוהה מרמת האקסיומות, אחרת לא יכול היית להשתמש בביטויים "סיבתיות-עולה" או "סיבתיות-יורדת" מלכתחילה." ממש לא, אני אפילו לא יודע מה זה "רמת האקסיומות" ומה זה "רמת המשפטים" ובטח שלא איך להשוות "גובה" של שני דברים שאני לא יודע מה הם טאיך להגדיר את הגובה שלהם. בסך הכל ניסיתי לתרגם את הטקסט שלך, ואת השימוש שלך במושגים שלך "סיבתיות-עולה" ו"סיבתיות-יורדת" לעברית פשוטה. אם נכשלתי, נכשלתי, אבל בטח שלא השתמשתי בהנחות סמויות.

נראה לי שבכל זאת לא הבנתי אותך. ניסיתי ונכשלתי. אולי זה בגלל קשיי ההבנה שלי, מצד שני, אולי יש לך כאן בעיה קלה בניסוח (או במה שאתה מנסה לנסח). אולי תנסה בכל זאת ללכת בעקבות העצה שלי ולנסח את מה שאתה רוצה לנסח בעברית פשוטה ומובנת גם לאנשים בעלי מגבלות הבנה (כמוני).
יציבות ואי-יציבות בלולאה 663898
"לא. סליחה, זה פשוט לא נובע מה"תובנה" הזאת."

מה, לדעתך, "פשוט לא נובע מה"תובנה" הזאת"? כי הרי בפירוש אתה מצהיר לפני כן "לא הבנתי." ולהלן דבריך:

"לא הבנתי. זאת סתם הגדרה של "מאפיין". יש עשרות כאלה לכל קבוצה של מושגים. נגיד, את החפצים הממשיים מאפיין משקל, נפח, מקום, תנע, צורה, צבע... לכל חפץ ממשי יש משקל, אבל המשקל לא מגדיר אף חפץ ממשי. לכל המספרים יש חצי, אבל חצי לא מגדיר אף מספר. מה מיוחד בנקודה, קו ואורך שהדליק אותך כל כך? למה הם מעניינים במובן הזה?"

שום דבר לא מיוחד באורך וקו ונקודה, למעט היותם דרך פשוטה להבין סיבתיות-עולה וסיבתיות-יורדת. חוששני שכאשר אתה כותב "אני לא מסכים. אין לי שום "תובנה" בנושא, אני לא מבין איך אפשר למצוא "תובנה" מדבר כל כך טריויאלי", אינך מבחין בין כוחה של פשטות לחולשתה של פשטנות, בנושא הנדון. כמ-כן אם אין לך שום "תובנה" בנושא, אם מה בדיוק אתה לא מסכים?

"ממש לא, אני אפילו לא יודע מה זה "רמת האקסיומות" ומה זה "רמת המשפטים" ובטח שלא איך להשוות "גובה" של שני דברים שאני לא יודע מה הם טאיך להגדיר את הגובה שלהם. בסך הכל ניסיתי לתרגם את הטקסט שלך, ואת השימוש שלך במושגים שלך "סיבתיות-עולה" ו"סיבתיות-יורדת" לעברית פשוטה. אם נכשלתי, נכשלתי, אבל בטח שלא השתמשתי בהנחות סמויות."

התרגום שלך הינו התרגום של הבנתך שלך, ולכן אינך ער להנחה-הסמוייה שבהגדרתך (ראה נא את השיפורים שביצעתי בה, אשר גם הם אינם פותרים את בעיית ההנחה הסמויה). באופן כללי, לא אתה ולא אני יכולים לתרגם משהו מבלי להבינו תחילה, והיות וטענת קטגורית בתחילת תגובתך כי אינך מבין את דברי, אין אי-הבנה זו יכולה לשמש, לדעתי, כבסיס מהימן לתירגומם.
יציבות ואי-יציבות בלולאה 663899
"שום דבר לא מיוחד באורך וקו ונקודה, למעט היותם דרך פשוטה להבין סיבתיות-עולה וסיבתיות-יורדת." הם לא. אם הם היו דרך פשוטה להבין מהם סיבתיות-עולה וסיבתיות-יורדת היית יכול להסביר את זה ב.. ובכן.. בפשטות.

"אין לך שום "תובנה" בנושא, אם מה בדיוק אתה לא מסכים?" אני לא מסכים אם זה שמהעובדה שאורך הוא מאפיין של נקודה ושל קו אפשר להסיק שאוסף של נקודות אינו מהווה קו, וקו אינו ניתן לרדוקציה לנקודה (ועדיין להחשב כקו). נכון או לא נכון, ואם אני זוכר נכון זה לא נכון, זה בטח לא נובע מהעובדה שאורך הוא מאפין של שניהם (משקל הוא מאפיין של גרגר אורז ושל ערימת אורז ובכל זאת נראה לי שאוסף של גרגרי אורז מהווה ערימת אורז). יש לך כאן איזשהי הנחה נסתרת, אני לא יודע מהיא, ולא ברור לי איזה הנחה נסתרת אפשר להניח על מנת להגיע מההנחה לתוצאה, אבל בהנתן העובדה שהצלחתי לחלץ ממך אחרי מאמצים רבים את התוצאה וההנחה בעברית ברור לי שהיחס ביניהן הוא לא יחס של נביעה לוגית.

"הרי בפירוש אתה מצהיר לפני כן "לא הבנתי."" נכון, לא הבנתי מה מיוחד בנקודה, קו ואורך שהדליק אותך כל כך.

"לא אתה ולא אני יכולים לתרגם משהו מבלי להבינו תחילה, והיות וטענת קטגורית בתחילת תגובתך כי אינך מבין את דברי, אין אי-הבנה זו יכולה לשמש, לדעתי, כבסיס מהימן לתירגומם." אני מסכים בהחלט. בגלל זה ביקשתי ממך כמה פעמים לתרגם את דבריך לבד. אם אתה רוצה שיבינו אותך אתה צריך לכתוב בשפה שבני אדם אחרים מבינים. כשלא נענתי לבקשותי ניסיתי לתת לך דוגמא לאיך אני מבין את מה שאתה כותב בתקווה שתנצל את ההזדמנות ותתקן אותי במקומות בהם טעיתי כך שבסופו של דבר יהיה לנו טקסט שאותו שנינו מבינים. הדרך שלך להתקדם הלאה היא או לקחת את העצות שנתתי לך ולנסח את ה"תובנה" שלך בעברית, או להמשיך לדבר בנמרית ולהניח שכל מי שחשוב מבין אותך.
יציבות ואי-יציבות בלולאה 663906
אתה כותב:

"אני לא מסכים אם זה שמהעובדה שאורך הוא מאפיין של נקודה ושל קו אפשר להסיק שאוסף של נקודות אינו מהווה קו, וקו אינו ניתן לרדוקציה לנקודה (ועדיין להחשב כקו). נכון או לא נכון, ואם אני זוכר נכון זה לא נכון, זה בטח לא נובע מהעובדה שאורך הוא מאפין של שניהם".

בדבריך אלה הבהרת לי כי מושג האורך מובן על ידך עפ"י סיבתיות-עולה בלבד, שעל פיה קו הינו אוסף של נקודות, שטח הינו אוסף של קווים, נפח הינו אוסף של שטחים וכו', או בקיצור, מושג האורך ניתן לרדוקציה לאורך=0 וכל השאר מורכב מאוספים של אורכי 0.

לדעתי, סיבתיות-עולה הינה ההשקפה הרווחת בין רוב המתמטיקאים והמדענים מזה כ-‏2500 שנים, ולעניות דעתי כדאי להוסיף ל"משחק" גם את הסיבתיות-היורדת, שעל-פיה מימדים "גבוהים" יותר אינם בהכרח אוסף של מימדים "נמוכים" יותר, והדוגמא הלוגית הידועה ביותר לכך הינה משפטי אי-השלמות של גדל, אשר על פיהם, קיים משפט מתמטי אמיתי (שקול למימד ה"גבוה" יותר במערכת מתמטית החזקה דיה להתמודד עם אריתמטיקה) אשר יכיחות אמיתותו אינה כריעה ע"י אקסיומות המערכת (שקולים למימד ה"נמוך" יותר במערכת מתמטית החזקה דיה להתמודד עם אריתמטיקה).

אם אינך מסכים למושג הסיבתיות-היורדת ולהכללתה למושג המימד (כפי שתיארתי לעיל) אנא, הדגם באופן מתמטי כי, לדוגמא, אורך>0 ניתן לרדוקציה לאורך=0 וגם להחשב לאורך>0.

לפני שתתחיל, אנא כך בחשבון כי כדי שאי-הסכמתך תהיה בעלת תוקף מתמטי, עליך להוכיח, לדוגמא, כי 1=0.

בהצלחה.
יציבות ואי-יציבות בלולאה 663911
יש שתי בעיות שמקשות עלי לנהל איתך דיון. אתה משתמש במושגים פרטיים שלא הגדרת, ואתה קופץ הרבה יותר מידי שלבים קדימה בלי להסביר.

מושג האורך לא מוגדר על ידי בשום צורה שהיא, לקחתי את ההגדרה שלך, והכלתי אותה על ה"תובנה" שלך, וזה מה שיצא. אני לגמרי לא בטוח שהבנתי למה אתה מתכוון בסיבתיות עולה ויורדת, ונראה לי שכדאי שתקרא את זה.

"לעניות דעתי כדאי להוסיף ל"משחק" גם את הסיבתיות-היורדת, שעל-פיה מימדים "גבוהים" יותר אינם בהכרח אוסף של מימדים "נמוכים" יותר" אז עכשיו הכנסת מושג חדש, "ממד", שברור שהוא מוגדר אצלך אחרת לגמרי מאשר אצל שער העולם, ובכל זאת לא ברור לך שאני משום מה מבין למה אתה מתכוון בו. לא, זה לא עובד ככה, אני לא קורא מחשבות.

"אם אינך מסכים למושג הסיבתיות-היורדת ולהכללתה למושג המימד (כפי שתיארתי לעיל) אנא, הדגם באופן מתמטי כי, לדוגמא, אורך>0 ניתן לרדוקציה לאורך=0 וגם להחשב לאורך>0."
לגמרי לא תיארת את מושג הממד, סתם הפלת אותו עלי. בכל מקרה, זה די פשוט, בו נגדיר מערכת אקסיומתית פסאודו-גיאומטרית עם שתי "נקודות" בלבד (נקרא להם דוד ושלמה), לכל אחד אורך אפס, וקו אחד (נקרא לו קו דוד-שלמה) שמכיל את שתי הנקודות ביקום שלנו, ובעל אורך 2.8. הנה, יש לנו אורך>0 שניתן לרדוקציה לאורך=0 וגם להחשב אורך>0.

למה אני צריך להוכיח ש:0=1 (לא שיש לי בעיה מיוחדת להוכיח את זה‏1, רק שאני לא רואה מה הטעם).

1 אלא אם כן אני חייב להשתמש ב-‏0 ו-‏1 המוכרים, ואז יש לי בעיה קטנה.
יציבות ואי-יציבות בלולאה 663917
ועוד כתבת:

"יש לך כאן איזשהי הנחה נסתרת, אני לא יודע מהיא, ולא ברור לי איזה הנחה נסתרת אפשר להניח על מנת להגיע מההנחה לתוצאה, אבל בהנתן העובדה שהצלחתי לחלץ ממך אחרי מאמצים רבים את התוצאה וההנחה בעברית ברור לי שהיחס ביניהן הוא לא יחס של נביעה לוגית."

סליחה ידידי, איזה "הנחה נסתרת" שאתה "לא יודע מהיא, ולא ברור" לך "איזה הנחה נסתרת אפשר להניח על מנת להגיע מההנחה לתוצאה" תומכת ב-"עובדה" שהצלחת "לחלץ" ממני "אחרי מאמצים רבים את התוצאה וההנחה בעברית" (בסתירה לטענתך כי אתה "לא יודע מהיא" ההנחה), כך ש-"ברור" לך "שהיחס ביניהן הוא לא יחס של נביעה לוגית."?

ואחרי הניסוח הנ"ל, האם אתה עדיין מחזיק בדיעה כי יש בידך לעזור לי לנסח את רעיונותי ביתר בהירות?
יציבות ואי-יציבות בלולאה 663900
בסיום דבריך כתבת:

"נראה לי שבכל זאת לא הבנתי אותך. ניסיתי ונכשלתי. אולי זה בגלל קשיי ההבנה שלי, מצד שני, אולי יש לך כאן בעיה קלה בניסוח (או במה שאתה מנסה לנסח). אולי תנסה בכל זאת ללכת בעקבות העצה שלי ולנסח את מה שאתה רוצה לנסח בעברית פשוטה ומובנת גם לאנשים בעלי מגבלות הבנה (כמוני)."

ראה ידידי, לפחות נסה להבין את המושג "סיבתיות-יורדת" כפי שהציג אותה הופשטטר בספרו "אני לולאה מוזרה" (שזהו, דרך אגב, הנושא של דיון זה).

באשר לי, איני מוצא כל בעיה להכליל "סיבתיות-יורדת" ע"י שימוש בקו לא-מורכב ביחס לנקודה (שמיותר לציין את אי-מורכבותה), או להכליל "סיבתיות-עולה" ע"י שימוש בנקודה (שמיותר לציין את אי-מורכבותה) ביחס לקו לא-מורכב.

כמו-כן הבה נתבונן שוב במשפט הבא שכתבת:

"לא הבנתי. זאת סתם הגדרה של "מאפיין"."

אולי כאן טמון ההבדל בין הבנתך להבנתי בנושא הנדון, כי איפה שאתה רואה "סתם הגדרה של "מאפיין"", אני מוצא "מאפיין" זה כגורם משותף המאפשר לקשר בין ביטויו השונים, ובכך להבינם גם מעבר לכל ביטוי לחוד.
יציבות ואי-יציבות בלולאה 663901
המטרה של הדיון מבחינתי היא לא להבין מה הופשטטר אמר, אילו הייתי רוצה לדעת את זה הייתי קורא את הספר שלו. המטרה היא לנסות ולהסביר לך למה קשה לאנשים להבין את מה שאתה כותב ולתת לך עצה איך להתנסח בצורה שתהיה יותר מובן לשאר בני האנוש. מבחינתי עצם העובדה שהצלחת לכתוב שלוש תגובות בלי להשתמש בסימנים מוזרים היא השג.

"איפה שאתה רואה "סתם הגדרה של "מאפיין"", אני מוצא "מאפיין" זה כגורם משותף המאפשר לקשר בין ביטויו השונים, ובכך להבינם גם מעבר לכל ביטוי לחוד." ועל מנת לא להשאיר אותנו במתח אתה גם צריך להסביר למה. במילים אחרות, האם זה נכון לכל מאפיין וקבוצת מאופיינים או שזה נכון רק לצירוף מאפיין-קבוצת מאפיינים "אורך", "נקודה" ו"קו". במידה וזה נכון לכל מאפיין, אז עדיין לא ברור לי מה כל כך מעניין בזה ולא בחרת דווקא בדוגמא הלא כל כך מוצלחת הזאת, במידה וזה נכון רק לשילוש הזה, אז איזה תכונה בדיוק כאן מיוחדת ומעניינת?
יציבות ואי-יציבות בלולאה 663909
ראה נא את תגובה 663906

נדמה שכבר הבהרתי לך כי אין שום דבר מיוחד באורך וביטויו כקו ונקודה, אך משום מה אתה מתעקש למצוא בהם משהו מיוחד במקום להשתמש בהם בהכללה (מה שנקרא במתמטיקה, שימוש במקרה פרטי "ללא איבוד הכלליות" Without_loss_of_generality [Wikipedia]).
יציבות ואי-יציבות בלולאה 663913
אתה כותב:

"המטרה של הדיון מבחינתי היא לא להבין מה הופשטטר אמר, אילו הייתי רוצה לדעת את זה הייתי קורא את הספר שלו. המטרה היא לנסות ולהסביר לך למה קשה לאנשים להבין את מה שאתה כותב ולתת לך עצה איך להתנסח בצורה שתהיה יותר מובן לשאר בני האנוש. מבחינתי עצם העובדה שהצלחת לכתוב שלוש תגובות בלי להשתמש בסימנים מוזרים היא השג."

ידידי, כיצד בדיוק אדם שלא משתדל לעשות כמיטב יכולתו להבין נושא נתון (ובמקרה זה "סבתיות-יורדת", תוך המנעות מקריאת ספר העוסק בנושא) יכול לשים לו למטרה להסביר לי למה קשה לאנשים להבין את מה שאני כותב, ואף לתת לי עצה איך להתנסח באופן שאהיה מובן?

"מבחינתי עצם העובדה שהצלחת לכתוב שלוש תגובות בלי להשתמש בסימנים מוזרים היא השג."

ואחרי כל הדו-שיח ביננו אתה עדיין מפרש את . ו-__ כאילו היו ביטויים וורבליים-סימבוליים ולא ביטויים וויזואליים, בקיצור, לאיזה הישג אתה טוען?
יציבות ואי-יציבות בלולאה 663914
אני מרים ידיים. בהצלחה.
יציבות ואי-יציבות בלולאה 663918
לפני שאתה מרים ידיים, כדי שתציץ ב-תגובה 663917
יציבות ואי-יציבות בלולאה 663919
ועוד כתבת:

"זה די פשוט, בו נגדיר מערכת אקסיומתית פסאודו-גיאומטרית עם שתי "נקודות" בלבד (נקרא להם דוד ושלמה), לכל אחד אורך אפס, וקו אחד (נקרא לו קו דוד-שלמה) שמכיל את שתי הנקודות ביקום שלנו, ובעל אורך 2.8. הנה, יש לנו אורך>0 שניתן לרדוקציה לאורך=0 וגם להחשב אורך>0."

בוא ונבחן את ה-"די פשוט" שלך:

אם המערכת שלך הינה בעלת שתי נקודות וקו, אין זה אומר כלל כי הקו ניתן לרדוקציה לאחת מהנקודות, או במילים אחרות, לא הראית כי הקו (אורך>0) ניתן לרדוקציה לנקודה (אורך=0) ועדיין נחשב לקו (אורך>0) במערכת שלך.

אם זוהי דוגמא לתובנותיך בנושא, אין פלא שאינך מבין את תובנותי בנושא.
יציבות ואי-יציבות בלולאה 663920
כדאי שגם אתה תקרה את דיון 2396 ואשמח אם תראה לי במאמר זה איזו שהיא התיחסות לסיבתיות-יורדת.
יציבות ואי-יציבות בלולאה 663921
הינה הקטע הרלוונטי מהמאמר של אלון עמית על משפטי אי-השלמות של גדל:

"נדגיש שוב את הנקודה העיקרית: את מה שאנחנו, בני־האדם, יכולים לראות, יכולה גם התורה הפורמלית (למשל, שאם T עקבית אז G אינה ניתנת להוכחה); את מה שהתורה הפורמלית לא יכולה להוכיח (את G עצמה), גם אנחנו לא יכולים. ככל הידוע למשפט גדל, בני־אדם אינם יודעים יותר מתורות פורמליות."

אלון שכח לציין כי T אינה יכולה להיות גם שלמה וגם עקבית, כדי להוכיח את אמיתות G במסגרתה.

במילים אחרות, G הינה אמת בלתי יכיחה ב-T בתנאי ש-T הינה עיקבית אך לא שלמה (אי-יכיחות אמיתות G ב-T נותרת בעינה גם אם נוסיף לה אינסוף אקסיומות, ומצב זה מכונה סיבתיות-יורדת).

כמו-כן ההפרדה בין בני-אדם לתורות פורמליות הינה סוגייה פילוסופית ולא מתמטית.
יציבות ואי-יציבות בלולאה 663955
הבה ונבחן את משפטי גדל, עפ"י הנאמר במאמרו של אלון עמית, ולשם כך אשתמש בקטעים שהם, לדעתי, ליבת המאמר:

"השיטה האקסיומטית

איך אפשר להוכיח דבר־מה, לדעת בוודאות גמורה שמשהו נכון? ילדים מומחים בלנהל עם מבוגרים דיאלוגים מייאשים מהסוג הבא: "אם תעזוב את הבובה, היא תיפול למים." – "למה?" – "זה נקרא כוח המשיכה. דברים נופלים." – "למה?" – "המממ... כי לכדור הארץ יש מסה...?" – "למה?" – "כי ככה אמא אומרת! די!" לוגיקה היא דרך מסודרת להוכיח דבר מתוך דבר. כיוון שכך, צריך להתחיל ממשהו, ואותו משהו נקרא הנחות־יסוד, או אקסיומות. את אלה אין אנו מוכיחים; אנו מקבלים אותן כי הן נראות סבירות, או שימושיות למטרה מסויימת. אחרי שהחלטנו על האקסיומות עלינו להסכים גם על כללי־היסק לוגיים, ואז אפשר לגזור מסקנות בצורה פשוטה: כל מסקנה היא או בעצמה אקסיומה, או שהיא נובעת ישירות ממסקנות קודמות על־ידי אחד מכללי־ההיסק.

שיטת־החקירה הזו, "השיטה האקסיומטית", היא עתיקת־יומין. למרות שהיא לא מאפשרת לדעת דברים "בוודאות גמורה", היא לפחות מקלה עלינו לברר בדיוק על מה אנו מסתמכים כשאנו טוענים משהו – מהן האקסיומות העומדות בבסיס הטענה, ומהם כללי־ההיסק הלוגיים בהם השתמשנו כדי לעבור מטענה לטענה. השיחה בין הילד לאמו מדגימה שליותר מזה לא ניתן לצפות: תמיד אפשר לשאול עוד "למה?", וכך להטיל ספק במה שקיווינו שהוא מובן־מאליו. דיאלוג ידוע של לואיס קרול מדגים שגם המרכיב השני בשיטה, כללי־ההיסק, אינו חסין בפני הטלת ספק אין־סופית שכזו.

במתמטיקה, במיוחד, זכתה השיטה האקסיומטית להצלחה רבה, החל מפיתוח הגיאומטריה על־ידי אוקלידס לפני למעלה מאלפיים שנה. לשיטה האקסיומטית במתמטיקה יש כמה מאפיינים ייחודיים, וכדאי להזכיר שלושה מהם. ראשית, האקסיומות בתורות מתמטיות אינן אמפיריות; לעיתים הן הגדרות שרירותיות לגמרי ("חבורה היא קבוצה עם פעולה המקיימת..."), ולעיתים הן מבטאות אמיתות בסיסיות של ההכרה שלנו ("שני גדלים השווים לגודל שלישי, שווים ביניהם"). שנית, כללי הגזירה במתמטיקה מתבססים על לוגיקה בוליאנית פשוטה של "אמת" ו"שקר"; אין באמצע, בערך, אולי או לפעמים.

שלישית, התחום המתמטי העוסק בנושאים הללו משתמש במונחים המוכרים לנו משפת היום־יום – "שפה", "תורה", "הוכחה", "אמת" ו"עקביות". אבל, כדרכה של מתמטיקה, המשמעות של המונחים הללו היא כאן מדוייקת, פורמלית, וכתוצאה מכך שונה למדי ממשמעותם הרגילה. "תורה", למשל (המכונה לעתים גם "מערכת"), היא אוסף של אקסיומות וכללי־היסק; "הוכחה" בתורה היא סדרה של "נוסחאות", שכל אחת מהן היא שרשרת של סימנים ב"שפה", והנוסחה האחרונה בסדרה היא הטענה אותה רצינו להוכיח (והיא, אם כך, "יכיחה"). הכללים הקובעים האם הוכחה כזו היא תקפה הם לגמרי מכניים, או "תחביריים": הם מתייחסים אך ורק לשרשראות הסימנים, ולא למשמעויות השונות שאנחנו יכולים לייחס לסימנים הללו. מושג ה"אמת", לעומת זאת, הוא מושג סמנטי, וגם לו יש הגדרה פורמלית התלויה ב"מודל" של השפה.

בשל מחלוקות מתמטיות שונות (וכמה שגיאות) שהתגלעו בסוף המאה ה-‏19, התחזק הרצון להבהיר בדיוק אילו אקסיומות דרושות במתמטיקה, ובפרט, לברר האם אפשר להיפטר מכמה הנחות שנויות במחלוקת. נסיון מסוג זה הופיע בספרם המונומנטלי של ראסל ו־ווייטהד "פרינקיפיה מתמטיקה" (PM), ונמשך כתכנית מעט מעורפלת המכונה היום "תכנית הילברט". על רקע זה נולד משפט גדל."

---------------------------------

אחלץ מקטע זה את התכנים העיקריים (לדעתי):

1. הנחות-יסוד הינן מסקנות שאינן מוכחות ואנו מקבלים אותן (מבלי להוכיחן) מפני שהן נראות סבירות, או שימושיות למטרה מסויימת.

2. אקסימיות הינן הנחות-יסוד לא-אמפיריות, כאשר הנחת-יסוד יכולה להיות הנחה שרירותית לגמרי או מבטאת אמת בסיסית של הכרתנו (ואם היא מוסכמת ע"י מספר גדול של הכרות, יקל הדבר לקבלה כאמת בסיסית של הכרה).

3. מסקנה היא או בעצמה אקסיומה (אמת בלתי מוכחת), או שהיא נובעת ישירות ממסקנות קודמות על־ידי כללי־ההיסק לוגיים, כאשר כללים אלה מתבססים על לוגיקה בוליאנית של "אמת" ו"שקר" (כללי ההיסק מכריעים באופן מכני (באופן שאינו מעניק כל משמעות לסימנים, מעבר לשימושם עפ"י כללי ההיסק) אם מסקנה הנובעת ממסקנות קודמות, הינה "אמת" או "שקר").

4. תורה מתמטית (נסמנה כ-T) היא אוסף של אקסיומות וכללי־היסק.

5. מושג ה"אמת" במתמטיקה הינו הגדרה פורמלית התלויה ב"מודל" (פירוש אפשרי להגדרה הפורמלית) המשמש במסגרת תורה מתמטית נתונה.

---------------------------------

...

"מה גדל כן

כולנו מכירים מילדותנו את המספרים הטבעיים: אחת, שתיים, שלוש והבאים אחריהם. בבואנו לחקור את תכונותיהם המתמטיות, אנו מעוניינים – בהתאם לשיטה שהוצגה לעיל – לבחור מספר קטן של אקסיומות מהן נוכל לגזור משפטים וטענות על המספרים האלה, תוך שימוש בכללי־היסק פורמליים. כיצד נבחר את האקסיומות? מצד אחד, השאיפה היא לבחור מעט כאלה, כדי שיקל עלינו להבטיח שהן באמת טבעיות ונכונות, ואינן מובילות לסתירה. מצד שני, אם נבחר מעט מדי, ייתכן שהן לא תספקנה כדי להוכיח כל מה שנכון. התכונה הרצויה הראשונה של התורה נקראת "עקביות", והשניה "שלמות". שני אלה הם מושגים פורמליים, בעלי הגדרה חד־משמעית: עקביות פירושה שאין הוכחה של דבר וגם של היפוכו; שלמות פירושה שיש הוכחה של כל דבר או היפוכו.

אוסף האקסיומות של תורה לא חייב להיות סופי. מסיבות טכניות, אפילו תורות פשוטות יחסית עבור המספרים הטבעיים מחייבות מספר אקסיומות אין־סופי. לאור זאת, עלינו לדרוש שיהיה תהליך חד־משמעי המאפשר לקבוע האם נוסחה מסויימת היא אקסיומה; אחרת, כשנתבונן בהוכחה מוצעת, לא נוכל אפילו לברר האם השורה הראשונה שלה היא לגיטימית. במקביל, יש לדרוש משהו דומה מכללי־ההיסק: אם מראים לנו צעד בודד בהוכחה, צריכה להיות לנו דרך לקבוע האם הוא אכן יישום של אחד מכללי־ההיסק או לא. תורה העומדת בשתי דרישות אלה נקראת "אפקטיבית".

משפטי גדל אינם חלים רק על תורות אקסיומטיות של המספרים הטבעיים. אבל – וזו נקודה חשובה – כדי שמשפט גדל יחול על תורה, היא חייבת לכלול כמות מסויימת של אריתמטיקה – כלומר, דרוש שאפשר יהיה לנסח ולהוכיח בה מספר משפטים בסיסיים בתורת המספרים. אנו נכנה תורות כאלה "אריתמטיות", למרות שזהו אינו מונח מקובל במיוחד. כעת נוכל לנסח במידה סבירה של דיוק את המשפטים של גדל.

המשפט הראשון: אם T תורה אריתמטית, אפקטיבית ועקבית, אז יש נוסחה G כך ש-T אינה מוכיחה את G וגם אינה מוכיחה את שלילתה של G. מכאן ש-T איננה שלמה.

המשפט השני: אם T תורה אריתמטית ואפקטיבית, אז יש נוסחה C האומרת "T היא עקבית". אם, בנוסף, T עקבית, הנוסחה C אינה ניתנת להוכחה ב-T."

---------------------------------

אחלץ מקטע זה את התכנים העיקריים (לדעתי):

1. עקביות פירושה שאין הוכחה של דבר וגם של היפוכו (בתורה מתמטית עיקבית לא קיימת מסקנה שהיא "אמת" וגם "שקר").

2. שלמות פירושה שיש הוכחה של כל דבר או היפוכו (בתורה מתמטית שלמה כל מסקנה במסגרתה, ניתנת להכרעה אם היא "אמת" או "שקר").

"במתמטיקה ובלוגיקה הוכחה היא סדרה סופית של טענות הנובעות זו מזו בעזרת כללי היסק, תוך שימוש בהגדרות, באקסיומות, ובידע קודם שהוכח קודם לכן, המראה שטענה מסוימת היא נכונה. הפרכה של טענה מהווה גם היא הוכחה - הוכחה שטענה זו אינה נכונה (כלומר ששלילתה של הטענה היא נכונה)."
(ציטוט מ-הוכחה [ויקיפדיה])

3. תורה "אפקטיבית" מחייבת את האפשרות לקבוע מהי אקסיומה ומה איננה אקסיומה במסגרתה, וכן את האפשרות לקבוע אם צעד בודד בהוכחה הוא אכן יישום של אחד מכללי־ההיסק, או לא.

4. תורה "אריתמטית" הינה אוסף של אקסיומות וכללי היסק המאפשרים לנסח ולהוכיח בה מספר משפטים בסיסיים הקשורים במספרים.

"המשפט הראשון: אם T תורה אריתמטית, אפקטיבית ועקבית, אז יש נוסחה G כך ש-T אינה מוכיחה את G וגם אינה מוכיחה את שלילתה של G. מכאן ש-T איננה שלמה."

(בקיצור T אינה (אריתמטית, אפקטיבית ועקבית) וגם (שלמה)).

"המשפט השני: אם T תורה אריתמטית ואפקטיבית, אז יש נוסחה C האומרת "T היא עקבית". אם, בנוסף, T עקבית, הנוסחה C אינה ניתנת להוכחה ב-T."

(בקיצור: אם T אריתמטית ואפקטיבית, ניתן לנסח במסגרתה את הנוסחה "T היא עקבית", אך עם T היא גם עיקבית, אין הנוסחה "T היא עקבית" יכיחה במסגרת-T, וגם עפ"י המשפט השני T אינה (אריתמטית, אפקטיבית ועקבית) וגם (שלמה)).

עפ"י שני המשפטים אין מערכת האקסיומות וכללי ההיסק של T (כאשר T אריתמטית, אפקטיבית ועקבית) מאפשרים להכריע אם הנוסחה "T היא עקבית" היא "אמת" במסגרת T) T אינה יכולה להוכיח את עקביות עצמה).

---------------------------------

...

קטע מתוך "מה גדל לא

"שתי שגיאות נפוצות נוספות הן הטענות "יש משפטים שבני־אדם רואים שהם אמיתיים, אבל תורות פורמליות לא יכולות להוכיח" ו"יש משפטים שבני־אדם רואים שהם אמיתיים, ומחשבים לא יוכלו לראות זאת לעולם". הצהרות מסוג זה נאמרו על־ידי הפילוסוף ג'ון סרל (Searle), הפיזיקאי רוג'ר פנרוז (Penrose) ואחרים. האם יש באמת משפטים שאנחנו רואים שהם אמיתיים, אבל אי־אפשר להוכיח אותם פורמלית? כותב שורות אלה, אישית, משוכנע שאין; בכל אופן, משפט גדל בהחלט לא מספק לנו כאלה, וכמוהו גם לא משפטים קרובים לו (כגון משפט טיורינג על בעיית העצירה).

אחד המועמדים הפופולריים למשפט כזה הוא נוסחת־גדל G הנזכרת במשפט הראשון. בהוכחתו המקורית בנה גדל את הנוסחה G כך שתהווה ניסוח פורמלי לטענה "G אינה יכיחה בתורה T". כיוון ש-G אכן מתגלה כלא־יכיחה, מסתבר שהיא נכונה, וש-T אינה יכולה להראות זאת – והרי לנו טענה שאנחנו, יצורים נבונים הקוראים את ההוכחה של גדל, רואים שהיא נכונה, ו-T אינה רואה זאת. האמנם מש"ל?

לא. הטעות היא שההוכחה לא מראה ש-G נכונה; היא רק מראה שאם T עקבית, אז G נכונה, ובדיוק את הרישא של המשפט הזה אנחנו לא יודעים (ו-T לא יכולה להוכיח). גדל היה מודע היטב לדקות הזו, והקדיש את סעיף 4 במאמרו המקורי לניתוח ההשלכות שלה. תוצאות הניתוח הן בדיוק המשפט השני שלו: את הטענה "אם T עקבית, אז G נכונה" בהחלט אפשר להוכיח ב-T, וקל להראות ש-G שקולה ב-T לנוסחת העקביות, אותה כינינו C.

אכן מבלבל, אבל זו עדיין לא סיבה לומר שגדל הוכיח שבני־אדם אינם מחשבים. נדגיש שוב את הנקודה העיקרית: את מה שאנחנו, בני־האדם, יכולים לראות, יכולה גם התורה הפורמלית (למשל, שאם T עקבית אז G אינה ניתנת להוכחה); את מה שהתורה הפורמלית לא יכולה להוכיח (את G עצמה), גם אנחנו לא יכולים. ככל הידוע למשפט גדל, בני־אדם אינם יודעים יותר מתורות פורמליות."

---------------------------------

אחלץ מקטע זה את התכנים העיקריים (לדעתי):

"אחד המועמדים הפופולריים למשפט כזה הוא נוסחת־גדל G הנזכרת במשפט הראשון. בהוכחתו המקורית בנה גדל את הנוסחה G כך שתהווה ניסוח פורמלי לטענה "G אינה יכיחה בתורה T". כיוון ש-G אכן מתגלה כלא־יכיחה, מסתבר שהיא נכונה, וש-T אינה יכולה להראות זאת – והרי לנו טענה שאנחנו, יצורים נבונים הקוראים את ההוכחה של גדל, רואים שהיא נכונה, ו-T אינה רואה זאת. האמנם מש"ל?

לא. הטעות היא שההוכחה לא מראה ש-G נכונה; היא רק מראה שאם T עקבית, אז G נכונה, ובדיוק את הרישא של המשפט הזה אנחנו לא יודעים (ו-T לא יכולה להוכיח). גדל היה מודע היטב לדקות הזו, והקדיש את סעיף 4 במאמרו המקורי לניתוח ההשלכות שלה. תוצאות הניתוח הן בדיוק המשפט השני שלו: את הטענה "אם T עקבית, אז G נכונה" בהחלט אפשר להוכיח ב-T, וקל להראות ש-G שקולה ב-T לנוסחת העקביות, אותה כינינו C."

-------

אם קל להראות שהנוסחה "G אינה יכיחה בתורה T" שקולה לנוסחה "T היא עקבית" במסגרת תורה T, הרי (עפ"י דברי אלון עמית) שתי הטענות הבאות הינן שקולות במסגרת תורה T:

טענה 1: אם T עקבית, אז "G אינה יכיחה בתורה T" הינה טענת "אמת" במסגרת תורה T.

טענה 2: אם T עקבית, אז "T היא עקבית" הינה טענת "אמת" במסגרת תורה T.

איני חושב שטענות 1 ו-‏2 שקולות זו לזו במסגרת תורה T, היות וטענה 2 הינה טענה טריוואלית מעגלית שאינה קשורה כלל למסקנות משפטי אי-השלמות של גדל, בעוד שטענה 1 קשורה אף קשורה למשפטים אלה, שעל פיהם T אינה "אריתמטית, אפקטיבית ועקבית" וגם "שלמה".
יציבות ואי-יציבות בלולאה 663981
כפי שכותב אלון עמית: "את הטענה "אם T עקבית, אז G נכונה" בהחלט אפשר להוכיח ב-T"

אך אם T עיקבית, אז הנוסחה "G אינה יכיחה בתורה T" הינה "אמת" ב-T שאינה יכיחה ב-T, ולכן T אינה תורה שלמה גם אם נוסיף לה אינסוף אקסיומות וכללי היסק.

השתמשתי במושג האורך ובביטויו אורך=0 ו-אורך>0, כך שאוסף אורכי 0 אינו מהווה אורך>0, ואורך>0 אינו ניתן לרדוקציה לאורך=0 וגם מהווה אורך>0.

הגדרתי שקילות בין אוסף אורכי 0 לאקסיומות של תורה T, ושקילות בין אורך>0 לנוסחה G בתורה T, שהינה "אמת" ב-T אך אינה יכיחה ב-T.

יש לשים לב כי G הינה נוסחת "אמת" בתורה T בתנאי ש-T עיקבית, אך לא-שלמה.

השקילות לעיקביות T עפ"י מושג האורך היא שכל אורכי 0 ממוקמים בתחום אורך>0.

השקילות לאי-שלמות T עפ"י מושג האורך היא ששום כמות (סופית או אינסופית) של אורכי 0 הממוקמים בתחום אורך>0, אינו מהווה את אורך>0.

ובהכללה למושג המימד, אוסף כל המימדים הקטנים ממימד נתון והממוקמים בתחומו, אינו מהווים את המימד הנדון.

עפ"י הנ"ל מתקבלת סיבתיות-יורדת, שבה המימד הגבוה הינו "אמת" המשמשת כסיבה לאוסף "אמיתות" (מימדים הקטנים ממנו והממוקמים בתחומו), אשר אין בכוחן להוות את "אמיתותו".

חזרה לעמוד הראשי המאמר המלא

מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים