|
||||
|
||||
לא הבנתי משהו: "כל תוספת כזו מחשבת מחדש את הכוחות שפועלים על החלבון ומשנה את מבנהו המרחבי." מי מבצע את החישוב? |
|
||||
|
||||
חשבתי על השאלה הזו. בהנחה, שמדובר בסינטזה בסביבה מיימית, מי שמחשב את הכוחות שפועלים על מולקולת החלבון היא הסביבה המיימית. הסביבה המיימית היא זו גם שמקפלת את מולקולת החלבון למבנה המרחבי שלה. אני מתכוון בעליל לפעולת חישוב שכן לי לפחות אין ספק שהפעילות הפיסיקאלית של המחשב האלקטרוני או הביוכימי (מוח) מייצגת את הפעילות של מציאת המצב המרחבי האופטימלי של מולקולת החלבון. אני יודע שזו טענה ''קצת'' עמוסה אבל לא נתחיל עכשיו את הדיון על החדר הסיני של סרל. |
|
||||
|
||||
העניין הוא שכמו שאלון אמר, ה"חישוב" הזה לא בהכרח מבוסס על סריקה של מרחב המצבים האפשריים ומציאת המצב האופטימלי. לכן לא ברור לי מה הקשר ל"מספר הצירופים האפשריים". אגב, גם מכונות טיורינג לא חייבות לעבוד בדרך נאיבית של לבדוק כל צירוף אפשרי. המרצה (המצויין) שלי לחישוביות הזהיר אותנו במשך כל הסמסטר הקודם לא להגיד על משימת חישוב כלשהי שהיא קשה רק בגלל שאין לנו מושג איך לפתור אותה בדרך יעילה ואנחנו *חושבים* שהדרך היחידה לפתור היא סריקת כל מרחב המצבים. בשביל להגיד שבעיה היא קשה צריך *להוכיח* שלא ניתן לפתור אותה בדרך יעילה. ...וכמובן, אף אחד לא אומר שהמודל הנכון הוא מכונת טיורינג "רגילה". אולי מדובר במכונת טיורינג עם אורקל? או במכונת חישוב מקבילית? |
|
||||
|
||||
מודל Ising דו ממדי הוא מודל המדמה סוג של (או, לחילופין, אלמנט מסויים מ-) פרומגנט. המודל מורכב מסריג ריבועי של חלקיקים אשר התכונה היחידה שלהם היא ספין ולו שני כיוונים - למעלה או למטה. המגנטיות נקבעת לפי מספר החלקיקים להם כיוון ספין זהה. האינטראקציה בין חלקיקים סמוכים נוטה לקבוע (אנרגטית) שהם ייטו לאותו הכיוון. אנרגיה תרמית כללית מביאה לסיבוב "חופשי" אקראי של הספינים. אם נקח אפילו מודל בגודל קטן יחסית, של 100X100 חלקיקים, מספר האפשרויות הוא שניים בחזקת 10000. זה בערך 10 בחזקת 3000. מספר גדול מכל החלקיקים ביקום (נראה לי). ברור שבמציאות לא עוברים על כל אפשרויות הסידור. כל ספין חי לו את חייו בשקט, ומחליט לאיזה כיוון לפנות על פי האנרגיה התרמית (פוטונים הפוגעים בו) ועל פי כיוון הספינים של שכניו. כדי לפתור זאת אנליטית, אנחנו יכולים או לסכום את כל האפשרויות בשקלול המתאים (מה שמכונה "פונקציית החלוקה") - דבר שיקח כנראה יותר זמן מגיל היקום, או, לחלופין, לדמות את הדינמיקה של המערכת. מסתבר שבסימולציה שמגרילה קונפיגרציות והופכת ספינים בהתאם לכללים מאוד פשוטים, מצליחים לדמות התנהגות אמיתית של סריג כזה על מחשב ביתי בזמנים קצרים יחסית. זה עונה על השאלה שלך? |
|
||||
|
||||
אני אולי קצת מוגבל. זו תשובה של האחד באפריל או רצינית? אני מוכרח להודות שאת חצי המילים לא הבנתי וכשהבנתי את המילים לא הבנתי את הטענה. בכל זאת, אם הבנתי נכון את הדוגמא לתרגיל החישובי היא לקוחה מתחום מכאניקת הקוונטים. אני בכוונה לקחתי דוגמא שבה כל מאורע קודם קובע את ההשלכות של המאורע שאחריו בדרך דטרמיניסטית (סיבתית?) כך שאין שאלה של הסתברות ולכן גם הבעיה של חישוב צעד אחר צעד איננה טריביאלית. |
|
||||
|
||||
זו הייתה תשובה רצינית, וחוץ מהמילים ספין ופוטון היא גם קלסית. מה מפריע לך בחישוב הסתברותי? אם הוא פשוט ומהיר ועובד ב-99.9% מהמקרים, למה ללכת בדרך הקשה? |
|
||||
|
||||
היום הששה במאי. לכן התשובה היא לא של האחד באפריל. היא תשובה רצינית לחלוטין. שאל מה לא הבנת ואני אשתדל לענות (במגבלות זמן וכח). הערת אגב - *הכל* זה מכאניקת קוונטים. לפעמים אפשר להזניח אותה, זה הכל. אם הבנתי נכון את הבעיה שלך, אז לא ברור למה יש בטבע סידור יחיד לכל רצף חומצות אמינו, מתוך המון אפשרויות. התשובה היא שאין צורך לעבור על כל האפשרויות - הדינמיקה במציאות מראה שאת התוצאות הללו ניתן לקבל תוך השמת כמה אילוצים (מינימום אנרגיה? שימור תנ"ז? שיווי משקל תרמודינמי?). הדוגמה שלי היתה למשהו דומה - יש מערכת בה מספר עצום של אפשרויות, והעובדה שהמערכת מתנהגת בצורה מסוימת מכל האפשרויות הללו ניתנת להסבר פשוט מאוד באמצעות הדינמיקה שלה. היא לא צריכה "לחשב" כלום באותה צורה שאבן שנזרקת לא צריכה לפתור משוואה דיפרנציאלית כדי לחשב את מסלול התעופה שלה (אם אתה רוצה דוגמה אחרת - הדיפרנציאל ברכב "פותר" משוואה דיפרנציאלית באותו אופן בדיוק). |
|
||||
|
||||
אני מקווה שהדיון הזה לא הופך לטרחני מדי. נדמה לי שיש כאן בילבול בין שני נושאי דיון (לפחות). האחד הוא תהליך ההתארגנות של מצב פיסיקאלי מורכב. אין לי ספק, אף שלא עקבתי אחר התהליך בעצמי מעולם שתהליך הסינטזה של מקרומולוקולה דוגמאת חלבון או חומצות גרעין הוא תהליך של צעד אחר צעד שבו נפתרים כל מיני אילוצים פיסיקליים. ברור שיש כמות גדולה מאוד של אילוצים שאינם נלקחים בחשבון בעת ביצוע התהליך אבל האילוצים שכן נלקחים בחשבון ויש להתמודד איתם בעת התקדמות התהליך הם עדיין מרובים מאוד. יתכן שהתשובה היא פתרון במקביל של מספר תהליכים, כפי שענה אלון. הנושא השני הוא השאלה מי הוא המחשב. יש לי הרגשה שכמה תשובות מחפשות איזה שהוא סובייקט שמבצע חישוב במנגנון נפרד מעצם התהליך הפיסיקאלי. לדעתי נוכחות הסובייקט הזה מיותרת. הדבר דומה לצילום במצלמה דיגיטאלית שבה תהליך התרגום של ה"מציאות" לתמונה מתווך על ידי מחשב בעוד שבצילום על גבי סרט צילום התיווך מבוצע, כביכול מיידית, על ידי תגובה כימית של סרט הצילום. אינני צריך להניח קיום סובייקט נבון כדי להניח שורת צעדים סיבתיים(?) שנובעים אחד מתוך קודמו. לא כל כך הבנתי את הביטוי "הסבר פשוט באמצעות הדינמיקה שלה". אני מניח שהכוונה למשל לקבועי קצב של ריאקציה כימית אבל הרי גם קבוע קצב כזה הוא תוצאה של אלפי מולקולות שמתרכבות מחד לעומת אלפי מולקולות שמתפרקות בעת ובעונה אחת מאידך. או שאני טועה? אני מתנצל על הערתי על האחד באפריל. היא לא היתה ראויה. |
|
||||
|
||||
אני לא מבין למה הכוונה ב-"נפתרים אילוצים פיסיקליים". בוא ונתחיל בקטן יותר - לשיטתך, האם כאשר כוכב לכת מסתובב סביב השמש הוא "פותר" את משוואת המסלול שלו? האם יש צורך שהיא "תפתר"? מה המשמעות של "פתרון" כזה? פונקציה המתארת את המיקום שלו כתלות בזמן? כדי לקצר, אני אספק את התשובה שלי. תראה אחרי זה אם זה עוזר לך. הכוכב לא "פותר" כלום ולמעשה שום דבר לא "נפתר". לכוכב לא אכפת אם בעוד חצי שנה הוא יהיה בדיוק בנקודה השניה, אם הוא חוזר על מסלולו בדיוק או לא, מה זמן המחזור של התנועה שלו ואיזו צורה היא יוצרת. בכל רגע נתון כל מה שהכוכב "יודע" זה מהי מהירותו, מהי מסתו, ומהם הכוחות הפועלים עליו. הוא מתקדם בצעד קטן כתלות בזה, בלי "לחשוב" מה היה רגע אחר כך. לשם הוא כבר מגיע עם סט נתונים חדש. *אנחנו* אלה שנותנים לזה משמעות. אנחנו אלה שמנסחים משוואות כלליות, ומהפתרון שלהם יכולים לנבא את כל מסלול הכוכב. היחידים שצריכים לפתור בעיות הם אנחנו. |
|
||||
|
||||
אלמוני יקר! ראשית למה אני מתכוון בביטוי "נפתרים אילוצים פיסיקליים" לדוגמא - חומצת אמינו תורנית צריכה לעבור למצב ביניים, הפפטיד שסונטז עד כה צריך להיקשר לאתר הפעיל של האנזים תוך כדי שינוי מרחבי שהופך את הקשרים לחלשים יותר, שיירים קודמים משנים את מיקומם עקב שינוי במטענים שמסביבם וכן הלאה. כל אלה הם תהליכים שמתבצעים בפועל וגם לוקחים זמן. האם לכנות זאת פתרון? לטעמי כן. נראה לי שהדיון הזה דומה למדידה בתורת הקוונטים. לא נדרש מודד סובייקטיבי. כל אינטרקציה עם חלקיקים שכנים היא שוות ערך למדידה. מאידך - כאשר אנחנו עומדים על רגל אחת האם אנחנו "פותרים" את בעיית שיווי המשקל או סתם פשוט עומדים? עכשיו? וכשלמדנו בילדותנו לעשות זאת? אינני חושב שהכנסת מושג הסובייקט תורמת רבות לדיון הזה. סוגיית המשמעות היא באמת נושא ענק. |
|
||||
|
||||
אוקיי. אנחנו מסכימים שהתהליכים מתבצעים בפועל וגם לוקחים זמן. כעת נשאלת השאלה למה לדעתך הם צריכים לקחת זמן עצום בגלל שמרחב המצבים עצום. האם לדעתך התהליכים, בעת שהם מתבצעים, "חושבים" בצורה כלשהי על כל מרחב המצבים? |
|
||||
|
||||
אני רואה שגדולים ממני (ראובן ועוזי) כבר דיברו על זה, וקיבלת (כמוני) את ההפניה. |
|
||||
|
||||
האם יש איזו הערכה (לבי מודל או העולם) כמה חומר בזמן נתון נמצא בסופרפוזיציה וכמה במצב מובחן? האם אני מובן? לעצמי? |
|
||||
|
||||
בתורת הקוונטים אין אבחנה אמתית בין מצב "מובחן" לבין "סופרפוזיציה". אתה מגדיר קבוצה של מצבי בסיס ("מובחנים"), ואז כל שאר המצבים נראים כאילו הם סופרפוזיציה של מצבי הבסיס. באותה עת בדיוק, מישהו אחר יכול להעדיף מצבי בסיס אחרים. כך שלשאלתך אין יותר מדי משמעות. ניתן אולי לנסח אותה אחרת. בהינתן קבוצה של מצבי בסיס (למשל, המצבים הקבועים בזמן), עד כמה המצב של המערכת שאנו בוחנים קרוב אל אחד מהם? לשאלה המשופצת הזו אפשר לענות. למשל, אטום במצב היסוד נמצא במצב בסיס. אבל, אילו מצבי הבסיס שבחרת היו הקורדינטות של האלקטרונים באטום, האטום היה נראה כאילו הוא סופרפוזיציה סבוכה מאוד. |
|
||||
|
||||
הרעיון היה היחס לזמן... |
|
||||
|
||||
אפשר להבין את התיקון הזה בשתי דרכים: 1. כוונתך היתה לשאול לגבי מצבים מוגדרים (מעתה אמור - "מצבים עצמיים") של הזמן (לעומת סופרפוזיציה). למיטב ידיעתי, הזמן הוא לא גודל קוונטי ואין בו סופרפוזיציות. אמנם יש "אי-ודאות זמן/אנרגיה", אבל היא מוגדרת מאוד אחרת מאי הודאות מקום/תנע (לדוגמה). לכן, הזמן אף פעם לא נמצא בסופרפוזיציה. 2. כוונתך היתה לשאול לגבי כמה זמן בערך חומר נמצא בסופרפוזיציה וכמה זמן במצב מוגדר. התשובה של הסטודנט מהטכניון היתה נכונה במקרה הזה. לביטוי "סופרפוזיציה" אין משמעות ללא הגדרת מדידה. רק אל מול מדידה נתונה אנחנו יכולים להגיד אם מערכת נמצאת בסופרפוזיציה או מצב עצמי. יותר מכך - מעקרון אי הודאות אנו למדים שעבור כל מדידה נתונה (עבורה המערכת נמצאת במצב נתון) ישנן מדידות אחרות שמבחינתן המערכת נמצאת בסופרפוזיציה. שאלה אחרת שאפשר לשאול היא "כל כמה זמן בערך בטבע מתבצעת מדידה". אבל בשביל זה נצטרך להגדיר הרבה יותר טוב מהי "מדידה". *אני* לא מכיר הגדרה מספיק טובה כדי לענות על השאלה הזו. |
|
||||
|
||||
מס' החלקיקים ביקום הוא בסביבות 10 בחזקה 80. 10 בחזקה 3000 גדול ממנו פי 37.5. ___________ (שכ"ג יורד בשקט למרתף, ומניח למתמטיקאים העצבנים לידות את אבני הבליסטראות שלהם על הדחליל בחצר. כשתיגמר להם התחמושת יהיה לו גן יפני לתפארת) |
|
||||
|
||||
פי 37.5? מה שגדול פי 37.5 מ-10 בחזקת 80 הוא 37.5 כפול 10 בחזקת 80. ודאי התכוונת ש-(10 בחזקת שמונים) בחזקת 37.5 זה 10 בחזקת 3000. (היי, אתה עושה את זה לטעויות כתיב, גם לי מותר). |
|
||||
|
||||
לא קראת מתחת לקו, או שאתה תורם לגן היפני שלי בכוונת מכוון? |
|
||||
|
||||
תשמע, אחרי שכתבת את מה שכתבת מתחת לקו, מישהו חייב ליידות אבנים... |
|
||||
|
||||
אני הימרתי על 50 ש"ח שהתשובה שלך תהיה שאתה לא מתמטיקאי. שיט. |
|
||||
|
||||
כשהאבנים מפסיקות להיות מיודות (מנודות לכיוון אחד) הגנים יפנים |
|
||||
|
||||
"מישהו" זה לא מתמטיקאי, ככה שאתה יכול להרשות לעצמך 25 ש"ח. |
|
||||
|
||||
אל תהיה מצחיק. כל תיכוניסט יודע שכשמדברים על חזקות אז כפל הופך לסכום. לכן 10 בחזקת 3000 גדול מעשר בחזקת 80 רק ב-37.5. כלומר ממש בקושי. |
|
||||
|
||||
אוף טופיק - אדון אייסינג, ההוגה של המודל שהזכרת, הוא אחד מאותם מדענים ששמם ייזכר כנראה לנצח בזכות הישג אחד בלבד. הוא כתב על המודל בעבודת הדוקטורט שלו, אבל אחר כך פחות או יותר לא עשה כלום בתחום המדע (אם אני זוכר נכון, אפילו לא היתה לו משרה אקדמית). עוד חבר'ה עם גורל דומה הם ון (מהדיאגרמות), ליפשיץ (מהרציפות), ובטח עוד שאני לא זוכר כרגע. |
|
||||
|
||||
יובל נאמן ( מהאומגא מינוס). |
|
||||
|
||||
לא ממש: http://en.wikipedia.org/wiki/Ernst_Ising
"Ernst Ising (born May 10, 1900, Cologne Germany – May 11, 1998, Peoria, Illinois) was a German physicist, who is best remembered for the development of the Ising model of ferromagnetism. He was a professor of physics at Bradley University until his retirement in 1976." |
|
||||
|
||||
האמת היא כנראה באמצע בין מה שזכרתי לבין מה שציטטת. אני קראתי על אייסינג האיש 1 בספר הנהדר critical mass, אותו הזכרתי בתגובה 356491 ושלא נמצא כרגע לידי. חיפשתי עכשיו קצת, ומצאתי את ההספד עליו באתר אוניברסיטת בראדלי, בה לימד. לפי הכתוב שם, הוא קיבל את הדוקטורט (שבמסגרתו ניסח את המודל) ב-1924, היה מורה בתיכון, נרדף (כיהודי) על-ידי הנאצים, ורק ב-1947 הגיע לארה"ב והתחיל ללמד באוניברסיטה. ציטוט: It was not until 1949 that he found out from the scientific iterature that his model had become widely known מתוך http://www.bradley.edu/las/phy/personnel/isingobit.h... ______________ 1 להבדיל מאייסינג המודל, אותו היה לי הכבוד להזכיר בעבודת הדוקטורט שלי |
|
||||
|
||||
אני מצפה לראות ערך מתוקן בויקיפדיה תוך 24 שעות. |
|
||||
|
||||
גדי, שומע? |
|
||||
|
||||
לא יעזור לך - עשה זאת בעצמך. |
|
||||
|
||||
על פי מה שסיפרו לי, הוא אפילו לא הצליח לפתור את המודל הדו ממדי הקרוי על שמו. הוא הצליח לפתור את המודל במימד אחד בלבד, ורק אונסגר (לקרוא Onsager, אין לי מושג איך באמת כותבים את שמו) הצליח שנים אחר כך לפתור אנליטית את המודל הדו-ממדי (כלומר, לא באמצעות סימולציה). את המודל התלת ממדי אף אחד לא הצליח לפתור עדיין. |
חזרה לעמוד הראשי | המאמר המלא |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |