|
||||
|
||||
מסתבר שכל מספר חיובי מהווה חסם עליון: ל*כל* קבוע חיובי c יש N כך שכל קבוצה בגודל cN של מספרים בין 1 ל-N מכילה סדרה חשבונית באורך 3. מה שכתבתי קודם לא היה מספיק חזק. במלים אחרות, לסדרה הנמנעת מסדרות חשבוניות יש צפיפות 0. אפשר למצוא הרבה פרטים במאמרים של טים גאוורס, כאן: |
|
||||
|
||||
זה נשמע סביר אינטואיטיבית. אנחנו שואלים כמה חזק הצפיפות שואפת ל- 0. כלומר אנחנו מבטאים את הצפיפות של סדרה שהאיבר הגדול ביותר שלה הוא n במונחי n (אולי השימוש במושג צפיפות לא מתאים, אנחנו מתבוננים ב- np כאשר p היא הצפיפות לפי הגדרתך). הראית שקיימת סדרה כזו שהאיבר הגדול ביותר שלה הוא n ומכילה n^0.62 (בערך) איברים, כלומר צפיפות של n^-0.38 - שואפת ל- 0. השאלה היא האם יש סדרה כזו שהצפיפות שלה דועכת למשל לפי 1/logn (לפי הטרמינולוגיה שלנו זו "צפיפות" n/logn). אני מניח שהבנת את זה כבר לפני פסקה וחצי אבל אני משתדל להיות כמה שיותר חד כדי לא ליפול שוב לבעית הגדרות. התכונה שציטטת אומרת שה"צפיפות" (כפי שהתייחסנו אליה עד כה, בניגוד לצפיפות סתם) אינה ליניארית, זה כבר מעניין, יש הוכחה פשוטה? |
|
||||
|
||||
שוב, אינני יודע מה הצפיפות המקסימלית הניתנת להשגה. אין הוכחה פשוטה לכך שכל קבוצה בעלת צפיפות חיובית (במובן המקובל...) מכילה סדרות חשבוניות מכל אורך - יש לזה כמה הוכחות שונות. זו של Szemeredi היא קומבינטורית באופייה ומאוד קשה; ניסיתי ללמוד אותה פעם ואני לא יכול לומר שהצלחתי. יש הוכחה חשובה של פירסטנברג הנחשבת קלה יותר מבחינה קונספטואלית למי שיודע תורה ארגודית, אבל היא גם דורשת הרבה עבודה. ויש ההוכחה של גאוורס עצמו, המשתמשת בכלים של תורת-המספרים האנליטית; לי אישית היא הכי ברורה, אבל אי-אפשר לקרוא לה פשוטה. אם מסתפקים בסדרות מאורך 3, אפשר לחזור אחורה להוכחה של Roth שהיא אנליטית כמו זו של גאוורס, וגם לא קלה. (כמו שאתה רואה, זו תוצאה חשובה שלא מעט אנשים הקדישו לה מחשבה. הסיכוי שיש נימוק קצר הוא נמוך מאוד). |
חזרה לעמוד הראשי | המאמר המלא |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |