|
||||
|
||||
לא תמיד. למשל ברור שקיימים מספרים ראשוניים (למשל ב-PA) גם בלי שנגדיר "מספר ראשוני". נדמה לי שה-"בעיה" כאן טמונה בשאלה למה מתייחס הכמת "לכל". אם הוא מתייחס באמת "להכל" אז ברור שבמשפט כמו "לכל x, x אינו ב-A" אז x מתייחס גם ל-A. אבל נראה לי שזו גישה בלתי סבירה (במובן מסויים, היא מניחה גם את קיומה של קבוצה-לגמרי-אוניברסלית, שכידוע, אינה יכולה להיות מוגדרת היטב - וגם את אקסיומת הבחירה). כנראה ש-"לכל" מתייחס לכל מה שאפשר לנסח בשפה ולהוכיח את קיומו בעזרת האקסיומות (כולן, בדיעבד) - כלומר לכל מה שקיים בתורה. אני לא חושב שיש כאן בעיה של מעגליות, ופלטוניזם אינו נחוץ לצורך העניין. |
|
||||
|
||||
יודע מה? אני די משוכנע עד שיבוא הצד השני ויביא טיעונים משכנעים משל עצמו. אני בטוח שנצטרך לחכות מעט מאוד... |
|
||||
|
||||
"לא תמיד. למשל ברור שקיימים מספרים ראשוניים (למשל ב-PA) גם בלי שנגדיר "מספר ראשוני"." ברור למי? מי הוא זה שברור *לו* שיש מספרים ראשוניים מבלי ש*הוא* מגדיר אותם? הרי זו הנחה סמויה אפלטוניסטית לעילא ולעילא. כפי שכבר הסברתי, רק מצבים מוחלטים כמו מלאות מוחלטת או ריקנות מוחלטת, יש בהם את הפשטות שמעבר לצורך שלנו להגדיר אותם. כל שאר המצבים המופשטים תלויים בהגדרות של תודעתנו, ואם הם אינם מוגדרים אז כל מה שיש זה המוחלט בכבודו ובעצמו, שקיומו נובע מעצמו ללא כל תלות בשאינו עצמו. |
|
||||
|
||||
''הרי זו הנחה סמויה אפלטוניסטית לעילא ולעילא.'' זאת הפעם הראשונה שאתה טוען להנחה סמויה פלטוניסטית, ואני מסכים איתך. עם זאת, יש לציין שאין חילוקי דעות בין פורמליסטים ופלטוניסטים לגבי הדרך שבה עוסקים במתמטיקה. השאלה היא שאלה פילוסופית תיאורטית לחלוטין, על המשמעות שנותנים למשפטים לאחר שהוכחו. (במילים אחרות, העובדה שזו הנחה סמויה לא מוכיחה את הטענה ''במתמטיקה יש הנחות סמויות''.) ''רק מצבים מוחלטים כמו מלאות מוחלטת או ריקנות מוחלטת, יש בהם את הפשטות שמעבר לצורך שלנו להגדיר אותם.'' לא שכנעת אותי בזה. |
|
||||
|
||||
"לא שכנעת אותי בזה." אין לי שום צורך או רצון לכפות עליך את דעתי. כל מה שאני עושה הוא לשתף אחרים ברעיונותי. כמו שאומרים בבדיחה המפורסמת:"ירצו יאכלו, לא ירצו לא יאכלו". |
|
||||
|
||||
לכפות? לא דיברתי על כפייה. דיברתי על שכנוע. והסיבה שלא שכנעת אותי בזה היא כנראה כי אין לך טיעון משכנע להצדקת הטענה שלך. |
|
||||
|
||||
"והסיבה שלא שכנעת אותי בזה היא כנראה כי אין לך טיעון משכנע להצדקת הטענה שלך." פשטות שאין פשוט ממנה כמו ריקנות מוחלטת או מלאות מוחלטת, אינה משכנעת אותך? תמהני מה לא משכנע בתגובה 334032 ונספחיה. |
|
||||
|
||||
דווקא לזה אתה מסכים? ואני לחלוטין מתנגד... נניח שאנחנו מגדירים את המספרים בעזרת PA. קיבלנו קבוצה של מספרים שאפשר לכפול, לחלק עם שארית וכו'. אנחנו לא מדברים על זה שאולי קיימים מספרים שמתחלקים רק בעצמם וב-1 ובטח שלא מגדירים אותם. האם זה אומר שהם לא קיימים בקבוצה שאנחנו עובדים איתה ושהגדרנו בעזרת PA? בטח שהם קיימים. זה בדיוק כאילו שנעבוד עם המספרים השלמים ופעולת החיבור ולא נקרא לאפס "איבר יחידה". זה אומר שאין במספרים השלמים איבר יחידה, כי לא הגדרנו אותו? בטח שיש. |
חזרה לעמוד הראשי | המאמר המלא |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |