|
||||
|
||||
"כל מה שרציתי להגיד הוא ש*אין*, *אין*, ועוד פעם *אין* הנחות סמויות במתמטיקה." טעות בידך, אנא ראה הנחה סמוייה ברורה ביסוד האקסיומות המגדירות את המספרים הטבעיים: היות ושפת המתמטיקה תלויה אף תלויה במודעותנו, לעולם לא נוכל לדעת באיזה הנחות סמויות אנו משתמשים כאשר אנו מגדירים מערכות מתמטיות. אשמח אם תראה הוכחה חד-משמעית הסותרת טענה זו. |
|
||||
|
||||
אולי זו בעיה שלי, אבל מתוך המסמך הארוך הזה לא הצלחתי לברור את ההנחה הסמויה. אנא פקח את עיני. בכל אופן, אם תהליך ההוכחה יכול להתבצע מכאנית ע"י אלגוריתמים שמוגדרים באופן סופי, אין בהוכחה הנחות סמויות. אם יש פונקציה ניתנת לחישוב ומוגדרת היטב, שמקבלת סדרה סופית של טענות ומחזירה "כן" אם זו אקסיומה / צעד היקש תקפים, ו"לא" אם זה לא - אז במערכת האקסיומות שמוגדרת ע"י הפונקציה אין הנחות סמויות. |
|
||||
|
||||
"אולי זו בעיה שלי, אבל מתוך המסמך הארוך הזה לא הצלחתי לברור את ההנחה הסמויה. אנא פקח את עיני" כבר בתחילת המסמך אני מדגים כיצד אקסיומות פיאנו ו-ZF מבוססות על הנחות סמויות, הנובעות ישירות מהבנה חלקית של מושגי הכמת והסדר. |
|
||||
|
||||
תוכל להדגים ולהציג הנחה סמויה כזאת? מה בעצם המשמעות של "האקסיומות מבוססות על הנחות סמויות"? אם היית אומר שהוכחה מסוימת מכילה הנחות סמויות, הייתי מבין. אבל אם האקסיומות מכילות הנחות סמויות - הן כבר לא "סמויות". |
חזרה לעמוד הראשי | המאמר המלא |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |