|
||||
|
||||
גודל שרירותי: אני לא מציע להוסיף גודל כזה, רק מבקש להצביע על העובדה שלתורה העוסקת בעולם לא מאוד אכפת מה קורה אחרי גוגולפלקס, ולמרבה השמחה משפט גדל מצוי רק שם. "מוחו של מתמטיקאי ומחשבותיו ופרותיהן, הם חלק חשוב של המציאות הגשמית". בהחלט. המספרים הטבעיים, עם זאת, אינם חלק ממוחו של אף מתמטיקאי בן-תמותה. מה שיש במוח ובמחשבות אלו אוספים סופיים של דוגמאות, חוקים, כללים, אנלוגיות, השערות, תקוות והוכחות. חבל שזה מדיר שינה מעיניך (אבל אם זה כך, אין הרבה מה לעשות). למה משפט גדל כן, ופרדוקס השקרן, או פרדוקס הספרן, לא? אלה הם מה שאתה מכנה "התחכמויות שניתן לטאטא מתחת לשטיח"? |
|
||||
|
||||
סליחה שאני מתערב, אבל בכל זאת, הוא לא *רומז*1 שמתמטיקה היא שפה טיבעית? 1 כמה שאפשר בהיגד מתמטי |
|
||||
|
||||
השפה המתמטית שונה מהשפה הטבעית בהרבה מובנים. באיזה מובן משפט גדל רומז שמתמטיקה היא שפה טבעית? זו נראית לי פרשנות מרחיקת-לכת ומעורפלת קצת... |
|
||||
|
||||
פרדוקס הספרן? מה זה? אותו פרינציפ כמו הספר? |
|
||||
|
||||
|
||||
|
||||
אני חשבתי שפרדוקס הספרן הוא משהו כמו 1)ספרן מחלק את הספרים בספריתו לפי קיום או אי קיום תנאי כלשהו 2) הוא מכין קטלוג של כל הספרים בסיפריה 3) לאיזה קבוצה עליו לשייך את הקטלוג אני לא זוכר כרגע מהו התנאי הפרדוקסלי. |
|
||||
|
||||
התנאי יכול להיות "ספרים שלא מאזכרים את עצמם". זה פרדוקס אחר, יותר מפורסם ופחות מעניין (לדעתי) מפרדוקס הספרן עליו דיברתי, המכונה כך כי ראסל ייחס אותו לבחור בשם Berry שהיה הספרן של אוקספורד (אז. אני חושב שהיום הוא כבר לא, אם כי אצל האנגלים אי אפשר לדעת). |
|
||||
|
||||
כמעט: בסיפריה יש קטלוגים שמכילים את עצמם ויש כאלה שלא. מכינים שני סופר-קטלוגים חדשים: אחד מכיל את רשימת כל הקטלוגים שלא מכילים את עצמם והשני את רשימת כל הקטלוגים שמכילים את עצמם. הפרדוקס הוא איפה לקטלג את הסופר-קטלוג הראשון. |
חזרה לעמוד הראשי | המאמר המלא |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |