|
||||
|
||||
מה הבעיה ב"בעית ההתקפלות"? (הבנתי חלק מראובן, אבל הסבר מזווית אחרת לא יזיק). |
|
||||
|
||||
ניסוי אנפינסן שתואר לעיל מראה שבידי החלבונים כל (או חלק) מהאינפורמציה הדרושה בכדי להפוך שרשרת חרוזים ישרה של חומצות אמינו שמחזיקות ידיים, למבנה תלת מימדי מסובך ומורכב מאין כמוהו. ללא המבנה אין פעילות לחלבון, ללא פעילות לחלבון אין תכונה. עד היום אנחנו לא מביניחם איך הם עושים את זה, איך החלבון מצפין את המידע הזה ומפענח אותו, וזה, אם אתה שואל אותי, *ה*צוואר בקבוק בהבנה של איך תכונות עובדות, איך מוטציות משבשות, ואיך ניתן לשנות תכונות ואף ליצור חדשות לחלוטין. קח בחשבון שהנסה גנטית היא ב-99% העברה של גנים ממקור א' למקור ב', אמנם באופנים שלא היו אפשריים בעבר, כמו מגחלילית לעכבר, אבל עדיין, הגנים כבר נוצרו בידי הטבע. גם אם הגן הוא חדש, הוא לרב הלחמה של מספר מקטעים שנוצרו בטבע. ע"י ההבנה של איך חלבון מתקפל, נוכל לכתוב, פשוטו כמשמעו, גן, ולדעת לאיזה מבנה תלת מימדי הוא מקודד, וכך ניצור תכונה חדשה ממש, שלא נראה כמותה. spooky...
|
|
||||
|
||||
עוד קצת פרטים (לפעמים אין ברירה אלא להגיח). בעיית קיפול החלבונים היא פשוטה. קלט: מבנה ראשוני, דהיינו לא פחות ולא יותר ממחרוזת של אותיות מא"ב בגודל 20 (חומצות האמינו). פלט: מבנה שלישוני של החלבון, כלומר המבנה המרחבי של המולקולה, כלומר קואורדינטות של כל אטום (עד כדי סיבובים והזזות גלובליים), ויהיה מספיק יפה גם מיקום של חומצות האמינו (בלי לדקדק באוריינטציה היחסית). זה נקרא מבנה שלישוני כי יש גם מבנה שניוני: רוב החומצות לאורך החלבון נמצאות באחד מבין מספר קטן של תתי-מבנים פופולריים מאוד, למשל "סליל" (alpha-helix) או "יריעה" (beta-sheet). קיומם של אלה שופך, אולי, קצת אור גם על בעיית המינימיזציה שבה דנתם. המבנה השניוני של החלבון הוא התאמה של כל אחת מהאותיות לתת-מבנה אליו היא שייכת. כל מספר שנים (שנתיים-שלוש, לא זוכר בדיוק) נערכת תחרות בשם CASP. הכללים פשוטים: כל מי שרוצה להשתתף יכול לגשת לאתר של התחרות ולהוריד מספר מחרוזות המתארות חלבונים הנמצאים כרגע בתהליך של פענוח מבנה1. המתחרים שולחים את הניחוש שלהם למבנים - שניוני, או שלישוני, לפי היומרה. כעבור כחצי שנה המבנים מפוענחים, ואפשר לתת ציון לכל מתחרה (גם זה לא לגמרי טריוויאלי, אבל יש שיטות מקובלות). אחוזי ההצלחה הם לא משהו בכלל. בפעם האחרונה שבדקתי, אנשי ה-threading הובילו עם משהו כמו 80 אחוז דיוק במבנה ה*שניוני* (שזה די מביך). השיטות מתבססות לא במעט על דמיון בין הרצף בשאילתה לרצפים של חלבונים מפוענחים, שזה גם די מביך - אין, עד היום, שום פונקציית פוטנציאל סבירה שאם ממזערים אותה אז צודקים (ומובן שגם למזער פונקציה נתונה, מספיק מסובכת, זה לא קל כלל וכלל). אגב, יש גם מבנה רביעוני, שהוא המבנה שבו מסתדרים מספר חלבונים הדבוקים זה לזה (המוגלובין, שכבר הוזכר, הוא דוגמה טובה). פרס נובל מכובד מאוד יינתן, באחריות, גם למי שיפתור את המיני-בעייה הבאה: נתון חלבון *עם מבנה ידוע*, ונתונה מולקולה *קטנה, גם עם מבנה ידוע*. נתון אפילו האתר הפעיל של החלבון (איזור מסויים במבנה). פלט: עצמת הקישור בין המולקולה לחלבון. זו בעיית ה-docking, שכל חברת תרופות תשמח לשלם כמה מאות מיליוני דולרים טובים למי שיוכיח שהוא ממש פתר אותה. 1 כן, אפשר לפענח ניסויית מבנה של חלבון. עושים זאת בעיקר ע"י גיבוש החלבון ואנליזה של תבנית התאבכות קרני X; מי שעשה ניסויים כאלה לסריגים פשוטים יכול לנחש כמה בלתי נעים זה למולקולה מסובכת. דרך אחרת מבוססת על NMR. יש הרבה סייגים: זה לוקח המון זמן לכל חלבון, זה לא עובד לכל חלבון, גם אם זה עובד זה לא בהכרח משקף את המבנה הטבעי (חלבונים בטבע לא נמצאים במצב גבישי, כמובן), ויש בעיות מיוחדות עם חלבונים טרנס-ממברנליים, למשל (אלה החוצים את קרום התא), שהם, למרבה הצער, גם נורא חשובים. גם על רמת הדיוק האמיתית של השיטות הללו יש ויכוחים. בסיס הנתונים העיקרי למבנים של חלבונים נקרא PDB, ויש viewers נורא יפים. |
|
||||
|
||||
1. חשבתי שאנחנו יודעים מספיק פיזיקה כדי לחשב את שקול הכוחות של שני אטומים (ומספיק מתמטיקה כדי לעשות את השאר באינדוקציה). 2. האם זה נכון שפונקצית הפוטנציאל הכללי היא לוקלית (כלומר, מסכמת פוטנציאלים מכל חומצות האמינו המשתתפות ברצף)? 3. האם המבנה המרחבי המדויק של חומצות האמינו ידוע? האם המודל הפיזיקלי טוב מספיק כדי לחשב את המבנה הזה? |
|
||||
|
||||
1. כן, גם אני חשבתי ככה (אבל הנחת האינדוקציה נעבעך היתה, נעבעך, חפוזה קמעה). 2. תורת הקוונטים היא לינארית, לא? עקרון הסופרפוזיציה מסכים עימך שהפוטנציאל הוא סכום התרומות של המרכיבים השונים. אני חושב שזה לא מאוד עוזר. כל דבר מסובך יותר מאטום המימן, אפילו מספר קטן של אטומים, כבר אי-אפשר לפתור אנליטית, וצריכים לפנות לשיטות פרטורבטיביות וכו' שגם אותן קשה מאוד מאוד ליישם בדבר סבוך כמו חלבון. בכל אופן, אני סבור שכל הפונקציות בהן משתמשים בפועל הן בעלות האופי שתיארת. 3. של כל חומצת אמינו בודדת, הכוונה? התשובה היא כן1, אבל זו שאלה מעניינת אם אפשר לשחזר את המבנה הזה de novo, יעני מכלום - אינני יודע, ואני מנחש שרק בערך, או בקושי, או עם הרבה עזרה הנובעת מידע מוקדם. בבעיית ה-docking שהזכרתי, למשל, אחד התפקידים של התוכנה הוא למצוא את המבנה המרחבי (הקונפיגורציה, לא המקום) של המולקולה ה*קטנה*, שהיא לעיתים קטנה מאוד - אפילו יותר מחומצת אמינו אחת. גם את זה התוכנות הקיימות לא מצליחות לעשות, בדרך כלל; נכון שחלק מהקושי נובע מנוכחותו של החלבון הגדול. 1 שחזור מבנה ע"י ניתוח תבניות התאבכות קרני X *מניח* את הנתון הזה כדי לנחש את מיקומה ומצבה של כל חומצה. שמעתי הטוענים שהתהליך הזה לא ממש מוצדק - במילים אחרות, אף אחד לא יודע אם החומצה באמת נראית בדיוק2 כך אחרי שהחלבון סיים להתקפל. 2 הדיוקים המוזכרים במאמרים הם של אנגסטרום אחד, לערך - בערך המרחק האופייני של קשר קוולנטי; שוב, לא ברור כמה מזה נובע מה*הנחות* של המפענחים, ולא מהנתונים (שקט, לאטור, הס. זה לא דומה אפילו). |
|
||||
|
||||
"רוזטה" באה לעזרה, אם רק יהיו מספיק מתנדבים: http://www.uwnews.org/article.asp?articleID=7605 |
|
||||
|
||||
3. אני רוצה לדייק יותר מההוא (שאולי לא פה, אבל מפגין ידע מרשים): לח.א. יש מבנה ידוע, אולם יש לה גם חופש תנועה במספר צירים. לכל חומצת אמינו (ח.א.) יש מצבים מועדפים עם ההסתברות להמצאותה בהם. למצבים הללו קוראים רוֹטָמֵרים ולפותרי מבנים תלת מימדיים של חלבונים (לתחום קוראים קריסטלוגפיה או בשם כולל יותר, ביולוגיה מבנית) יש רשימות ספריות רוטמרים אותם הם מנסים להתאים למבנה החלבון (הבנוי כאמור ממאות ולעיתים אלפי ח.א.) |
|
||||
|
||||
תודה על התאור המקיף. שמעתי פעם שלגבש חלבונים זה כמו לגבש חתולים (חיים כמובן). בקשר לבעית העיגון, נדמה לי שהמצב הוא אפילו יותר מסובך- שמעתי שיש חלבונים שיכולים לשנות צורה (כמו מלכודת עכברים) ולתפוס את המולקולה הקטנה. |
|
||||
|
||||
בהחלט, אם כי לרוב השינויים הם קטנים. (להגיד "המוגלובין" עוד פעם? המבנה של המולקולה משתנה קלות כשיש חמצן מעוגן לקבוצת הברזל, לעומת המבנה כשאין חמצן כזה. כך ההמוגלובין "יודע" מה עליו לעשות). בפענוח מבנה ע"י קרני X, הגיבוש הוא אכן אחד החלקים הבעייתיים ביותר (אם לא הבעייתי מכל). בשנים האחרונות NMR צובר תאוצה; בשיטה זו אין צורך בגיבוש. הבעייה כאן היא שהשחזור מסתבך אקספוננציאלית עם אורך החלבון. נדמה לי שמגיעים לכמה עשרות חומצות אמינו, אולי אפילו מאתיים במקרים נדירים, אבל חלבונים רציניים יותר עדיין קשים מדי. |
|
||||
|
||||
תגיח, תגיח. |
|
||||
|
||||
להגיח זה *לא* לגרום לאחר/ת לגנוח. |
|
||||
|
||||
|
||||
|
||||
מעניין מאוד (דרך מנומסת לומר שלא הבנתי). צריך להציץ במאמר. |
|
||||
|
||||
במסגרת מדורנו "לאן נעלמו הפתילים המעניינים באייל": http://www.sciencedaily.com/releases/2009/03/0903020... (דגדגן: "The study has revealed that these proteins misfold en route to their intended structure". אין התייחסות לבעיה שנדונה כאן בדבר המרחב העצום של המצבים האפשרייים. הניחוש שלי הוא שרובם הגדול נגדע באיבו לאחר מספר קטן של חומצות אמינו, ומי שזה מזכיר לו את בעיית מציאת המסע הטוב בשחמט שידע שזה הזכיר לי אותו דבר). |
|
||||
|
||||
מלקרוא את שני המאמרים שקישרת ( פה ועל הטוקסופלזמה) אני מקבל את הרושם שמישהו ממחזר כתבות בסיינס דיילי. אני לא חושב שזה חדש שחלבונים מתקפלים במסלול רועש, וזה בטח לא חדש שיש קשר בין טוקסופלזמה וסכיזופרניה. מעניין מה הקבוצות הללו *באמת* גילו. |
חזרה לעמוד הראשי | המאמר המלא |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |