בתשובה לשוטה הכפר הגלובלי, 28/05/04 21:02
אוקי :-) 221939
גם אני לא הצלחתי לקלוט מה הקטע ומה ניתן להסיק מהנתונים (מה הרלבנטיות של מסת הכדור ? ‏1 מה משמעות הרוחב הממוצע?). את הטיעון של צב מעבדה (תגובה 221610) ניתן להציג גם בלי נוסחאות: בשל הפיכות חוקי המכניקה (כשאין חיכוך או כחות מכלים), הזמן יהיה זהה לזה שבבעיה ההפוכה, המתקבלת ע"י הרצת הסרט ברברס. מאחר שכדור במנוחה ‏2 על ראש גבעה אינו מתחיל להתגלגל במורד מעצמו ‏3, הרי שלא יגיע אל רגלו של אלון בזמן סופי.

1 יש לי חשד בלתי מבוסס שבעיטה בכדור שמסתו 1 ק"ג כך שהוא מטפס לגובה 30 מטר (עם או בלי שיפוע), מאד תכאיב לרגל הבועטת.
2 אני מסיק מהניסוח "נגמר לו הכח והוא נעצר" שמדובר בעצירה מוחלטת (תאוצה אפס) ולא מנוחה רגעית. במקרה שמסקנה זו שגויה, גם הטיעון לעיל אינו תקף.
3 אלון הוא אדם הגון ולכן אני מאמין שגם אם הוא מכיר מושגים מגונים כמו "שבירה ספונטנית של סימטריה", הוא לא היה מתקיל אותנו בהם ללא אזהרה.
אוקי :-) 221940
אתה והצב שיחקתם אותה. התשובה היא אכן אינסוף, הנימוק הפשוט ביותר הוא להקרין את הסרט לאחור, והרמאות הזולה שלי (בעטייה אני עשוי להיזקק לעו"ד) היא כל הנתונים שזרקתי שם. כולם לא רלוונטיים, אבל אם לא אומרים אותם התשובה ברורה לגמרי - אם אתה סומך על חד החידה שיש תשובה, היא חייבת להיות 0 או אינסוף אם אין שום נתון מספרי.
אוקי :-) 221982
אם אני עדיין זוכר את הפיזיקה שלמדתי בתיכון (אם כי צריך לקחת בחשבון שלמדתי אותה מהספר של מחברי תגובה 221916) התשובה אינה אינסוף, אם כי הכדור כמובן יעצר לזמן קצר בלבד(1) ואח"כ יתגלגל חזרה במורד הגבעה.
התאוצה הפועלת על הכדור היא התאוצה הגרוויטציוונית מוכפלת בסינוס השיפוע. מכיוון שלגבעה גובה כלשהו (30 מ'), הרי השיפוע אינו אפס, והסינוס שלו גדול מאפס, כך שיש לכדור תאוצה (בכוון מורד הגבעה). יש לנו מספר נתונים לא רלוונטיים לפתרון השאלה: מסת הכדור, ורוחב המסלול. לעומת זאת חסר לנו (לפחות) אחד משני הנתונים: המהירות ההתחלתית של הכדור או שיפוע הגבעה.

___
(1) מכיוון שתנועת הכדור היא רציפה, לא ניתן לעבור מגודל חיובי לשלילי (ולהיפך) אלא דרך האפס.

h (30 m) = ½ g sin θ t^2
v (0 m/s) = v0 - g sin θ t

אוקי :-) 221983
למה השיפוע בפיסגה לא יכול להיות 0? (אני הבנתי מהשאלה שההנחה היא שהוא דווקא כן אפס).
אוקי :-) 221984
אוקי :-)
כמובן שהיו לי כאן כמה קרובים (קו"ף צרויה(1), לא הבאתי את המשפחה) לצורך הפשטות, אבל, אם אכן הוא מגיע לפסגה במהירות גדולה מאפס, ושם השיפוע הוא אפס, (לצורך העיניין לא גבעה, אלא "הר שולחן"), אזי הוא ימשיך במהירות זאת לנצח.

__
(1) אחות של דויד.
אוקי :-) 221987
לא צריך גבעה שולחנית. מספיק גבעה רגילה עם נקודת מקסימום יחידה (פיסגה) עליה החליט הכדור השובב של אלון בלון לאבד כח ולהעצר.

__
(1) דוית' לא דויד. שכנם של יעקוףףףף ומאייייר.
אוקי :-) 222031
תגובה 221982 עדיין בתוקף? אני לא בטוח שהבנתי את הטיעונים.
אוקי :-) 222996
את המהירות ההתחלתית ניתן לחשב משימור אנרגיה mv^2=mgh
אוקי :-) 223020
תגובה 222860 טיפה יותר מדוייקת.
אוקי :-) 221985
הפתיל מתחיל להזכיר קצת שיעור במכניקה בסיסית, ובכל זאת אני מרגיש צורך לשאול שאלה נוספת. אינטואיטיבית גם לי נראה שהתשובה אינסוף אבל אז חשבתי על אנלוגיה מסויימת...
נניח שיש שיפוע חלק ויפה בגובה של יותר מ30מ'. זורקים את הכדור כך שיגיע לגובה של 30מ', יעצר רגעית ואז יתגלגל חזרה מטה. אבל אם הכדור נקודתי מה זה בעצם משנה אם השיפוע ממשיך למעלה או נגדע בפתאומיות ויורד מטה (כמו בשאלה המקורית)?
מה ההבדלים באיבודי האנרגיה בשני המקרים?
אוקי :-) 221986
זהו, שאם הוא כבר נעצר אז too late. אבל אם היא מגיע לפסגה במהירות אפסילון, ואז השיפוע נגדע באכזריות לאפס, אזי הוא ימשיך באותה מהירות אפסילון לעבר השקיעה.
כלומר, עזבנו את המכניקה הבסיסית והגענו (בחדווא ובדיצה) אל השאיפה לאפס.
אוקי :-) 222033
השיפוע לא נגדע בפתאומיות, אלא מתמתן בצורה חלקה ויורד. אם תזרוק את הכדור באותה מהירות התחלתית בשני המצבים שתיארת, הכדור יגיע למהירות 0 במקרה הראשון בגובה מסויים, אבל במקרה השני (בגלל ההתמתנות) הוא יגיע לשיא במהירות גדולה בהחלט מ-‏0.

הטריק בשאלה הוא ההנחה (המוזרה) שהכדור מגיא למהירות 0 בדיוק בשיא. זה לא יכול לקרות תוך זמן סופי, ודרך יותר ברורה (אולי) לפרש את זה היא כך:

* אם ניתן לכדור מהירות התחלתית מסויימת, הוא יגיע לפסגה במהירות מטר לשנייה (וימשיך ויתגלגל במורד), וזה יקח (נגיד) 10 שניות.

* אם ניתן מהירות נמוכה קצת יותר, הוא יגיע לפסגה במהירות סנטימטר לשנייה (וימשיך ויתגלגל במורד), וזה יקח 1,000 שניות.

* אם ניתן מהירות טיפה יותר נמוכה, הוא יגיע לפסגה במהירות מילימטר לשנייה (וימשיך ויתגלגל במורד), וזה כבר יקח 10,000 שניות.

וכו' וכו'. יש מהירות התחלתית קריטית מסויימת שמתחתיה הכדור בכלל לא מגיע לפסגה, מעליה הוא מגיע וממשיך, אבל *בה* הוא זוחל מעלה מעלה לאט יותר ויותר באיזור הפסגה ולעולם לא יגיע אליה, אלא *שואף* למצב מנוחה בפסגה בדיוק.
אוקי :-) 222036
כל עוד הוא שואף למצב מנוחה ולא לריאות, לדעתי האישית זה בסדר. רק שיהיה בריא ושלא ישתה לנו חשיש.

יאללה - עוד שאלה בסגנון (אם יש לך).
אוקי :-) 222093
אם ''בסגנון'' זה חידות חמודות בפיסיקה בסיסית, אז יש אולי עוד כמה, אבל נפסיק להפריע לאיזי. אשלח משהו ל''אייל ששאל'' הבא, אחרי שתיפתרנה החידות.
אוקי :-) 222102
הטריק הוא שמהנדסים לא מכירים את המונח "בדיוק". או שהמהירות היא לא בדיוק אפס (נניח, פחות מ5% מהמהירות ההתחלתית זה וירטואלי אפס), או שהפיסגה היא לא *בדיוק* בשיא (מטר לפני/אחרי, מילימטר, מיקרון - בחר את רמת הדיוק הרצויה), או שהאינסוף הוא לא בדיוק אינסוף.
אוקי :-) 222127
אה, סליחה. מהנדסים מתבקשים לפנות לחידה הקודמת :-)

"בחר את רמת הדיוק הרצויה" - גם מהנדס יכול לצייר גרף של משך הזמן כפונקציה של המהירות (ההתחלתית, הסופית, לא חשוב), עבור 30 ערכים בתחום סביר, להמשיך את הקו ולהשתכנע שהוא שואף ל<צונזר> - אה, כלומר, עולה ללא גבול.
לו מהנדסים היו מוכשרים כל כך 222140
או שהם היו מתמטיקאים, או שגשרים ותקרות לא היו מתמוטטים :)
2 222345
כמובן שהתאוצה מתאפסת בראש הגבעה (החוק השני של ניוטון).

שאני אהבל

חזרה לעמוד הראשי המאמר המלא

מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים