|
||||
|
||||
אולי אני הוא זה שעייף, אבל נדמה לי שלחצוצרה הזו יש דווקא שטח פנים סופי. |
|
||||
|
||||
העייף היה אני. איך לא? העניין הוא שבשטוחלנדיה שם גדלתי והתחנכתי, החצוצרה הדו-ממדית שתיארתי מספיקה להראות את העניין, ולא הייתי זהיר במעבר לשלושת הממדים הנפוצים אצלכם. כמובן שהחצוצרה שתיארתי היא בעלת שטח פנים סופי, ואפילו לא שונה בסדרי גודל מהשטח המישורי שמימנו התחלנו. אז מה? מה הקטנוניות הזאת תורמת? הה? ______________ שכ"ג, חוזר לדיונים על ספרות, מקום שאי אפשר ל*הוכיח* שהוא אידיוט. |
|
||||
|
||||
הבה ננצל את ההזדמנות להדגים להדר, שוקי ואחרים איך טרחן סדרתי היה עלול להגיב על טענתו המגוחכת של מר נוב: לא, יובל, אתה טועה, וזאת טעות שלא רק אתה אלא *כל* המתמטיקאים נופלים בה, מפני שאינכם מבינים באמת את מושג האינסוף, כפי שהראיתי ב<רשימה של 700 מראי מקום שכולם מבולבלים כמו ההודעה הזאת בערך>. בקצרה: שטח הפנים של החצוצרה הוא כשטח האינטגרל המקורי מוכפל ב פיי. פיי! והרי ידוע שפיי מכיל אינסוף ספרות, ואתה לא רוצה לטעון ברצינות שמכפלה של מספר באינסוף נותנת לך גודל סופי. זאת המכשלה הידועה שהסברתי כבר כאן <עוד 700 מראי מקום כנ"ל> שנפטרים ממנה רק בעזרת ההגדרות שאני הצעתי <עוד 700...> למושג מספר, אינסוף ועוגת תפוחים. בקיצור, <הוסיפו כאן 200 שורות של בלה-בלה> ומכאן שכל מספר הוא אינסופי ורק הדמיון המוגבל שלנו כופה עליו את ה"סופיות" כביכול שלו. הממסד המתמטי הדוגמטי לא מוכן לקבל את התיאוריה שלי רק מתוך הפחד להודות בבורות או מתוך טמטום ואטימות. כך התייחסו גם לגלילאו בשעתו! אשמח לשלוח לך את התיאור המפורט של התיאוריה שלי, ואני בטוח שאם תקרא אותו בתשומת לב תבין את המהפכה המחשבתית שאני מציע. מדובר בקובץ pdf קטן של 300 GB. בכבוד רב, טכ"ג |
|
||||
|
||||
Point taken. :)
|
|
||||
|
||||
point taken? ההה. point. אם היית יודעת בכלל מה זאת נקודה, היית מבינה שאי אפשר לקחת אותה לשום מקום. את ודאי מתכוונת לאותו מושג מעורפל שמוליך לסתירות ושטויות מהגיאומטריה האויקלידית, ולא ל"נקודה" האמיתית, המושג שמאגד בתוכו את האידיאות של האפס והאינסוף, כפי שהראיתי במאמר שלי "נקודות למחשבה על נקודות ומחשבה"? אני מצרף כאן קובץ pdf קטן ... או קיי, אני חושב ש*עכשיו* הרעיון ברור, אבל כל זמן שמישהו יטרח לענות לי אני לא אפסיק, אחרת אני לא טרחן כפייתי אלא טרחן סתם. |
|
||||
|
||||
אמור לי, ידידי הטרחן, מה דעתך על השערת גולדבך? (אני שם מיליון דולר שיש לך הוכחה במגירה...) |
|
||||
|
||||
לי יש הוכחה להשערת פזבך. |
|
||||
|
||||
לי דווקא יש הפרכה לנחושתמוצרט! אני אשלח באימייל את עיקרי ההפרכה לכל המעוניין, ובתוספת 50$ אשלח גם את ההוכחה המלאה. |
|
||||
|
||||
הפרכת? שלח אימייל להיסנובו שיניה1, הגולדבכאי התורן ב-sci.math, שדווקא סבור שהוכיח. יהיה פיצוץ. אנא שים את אנדרווד דדלי בסי-סי. 1 כתובתו אירונית: erdosfan@yahoo.com |
|
||||
|
||||
אגב השערת גולדבך, נתקלתי לאחרונה במושג "נגזרת של מספר" שדווקא מצא חן בעיני. מכיר? http://www.maa.org/mathland/mathtrek_03_22_04.html |
|
||||
|
||||
לא, לא הכרתי - נחמד. צריך לחשוב קצת כדי לראות שההגדרה הזו באמת עובדת (כלומר, מוגדרת היטב - את הנגזרת של 12 אפשר לחשב בשתי דרכים, אבל התוצאה זהה). ואם כבר מטיילים אסוציאטיבית, אז הנה מאמרון פופולרי ממש יפה, שמתחיל מהוכחה קצרצרה למשפט פרמה, גם כן ע"י גזירה של מספרים: |
|
||||
|
||||
הנגזרת של n שווה ל- n, כפול סכום ההפכיים של המחלקים הראשוניים של n (כולל ריבוי). אפשר להסיק מזה שבממוצע, הנגזרת גדולה מ- n פי בערך (log(n. |
|
||||
|
||||
את החלק הראשון ראיתי (לכך התכוונתי למעלה, אבל באמת לא הבהרתי איך רואים זאת). מצלצל לי מוכר שסכום ההפכיים הוא בערך (log(n אך אני לא בטוח - למה זה כך? |
|
||||
|
||||
טעיתי - לא (log(n, אלא (loglog(n (ראה 1). כשמסכמים את n'/n לכל n<=x, מתקבל הסכום של x/p לכל הראשוניים הקטנים מ- x (עם תיקונים מסויימים), וידוע שסכום ההופכיים של הראשוניים עד x הוא בקירוב טוב ((log(log(x. הסיבה היא, בעקרון, שזה האינטגרל של אחד-חלקי-(x*log(x (ו- (n*log(n הוא קירוב טוב לראשוני ה-n-י). 1 ציטוט שראיתי: log(log(log(n))) is proven to go to infinity, but was never observed to actually do so.
|
|
||||
|
||||
תגובתך כוללת שלושה סימני log רצופים (או יותר). מומלץ להמנע מהפרזה בסימנים אלה, משום שהדבר יוצר רושם של מתינות מיותרת. אנו ממליצים לך לערוך את התגובה מחדש (בעזרת קירוב מתקבל על הדעת). |
|
||||
|
||||
רק רפרפתי על המאמר, אבל נדמה לי שיש פה מן ההטעיה לקשר את הגזירה למשפט פרמה. המשוואה אותה גוזרים מתארת רצף של ערכים ( השוויון הוא עבור פולינומים) ולכן אפשר לגזור אותה. במשפט פרמה יש רק ערך אחד. אני הרגשתי שהמחברים מתחילים קצת בשרלטנות וזה קלקל לי את הרצון להתעמק בשאר המאמר. |
|
||||
|
||||
חלילה, חלילה, זו בדיחה... קרא הלאה, ממש כדאי. עמוד אחד אחר כך הם מסבירים במדוייק מה *כן* אפשר להסיק מהשעשוע הזה. |
|
||||
|
||||
כן, הבנתי וגם קראתי הלאה, אבל זה נראה לי טריק זול, מה גם שהם לא ממש מסבירים בשום מקום את ההבדל. |
|
||||
|
||||
תודה גם לך. בדיון מתחת לשיר (של לא אחר מאשר סטניסלב לם, למי שלא הציץ בקישור) מוזכרים עוד שלושה שירים "מתמטיים": ויש, כמובן, את "דרך שתי נקודות עובר רק קו ישר אחד" של עמיחי. |
|
||||
|
||||
של לא אחרת מאשר ויסלבה שימבורסקה. |
|
||||
|
||||
אני מאמין בהשארת גולדבך לנפשו, בחושך ובקור - זה ילמד אותו לקח! ההשערה שלו מבוססת על תפיסה מעוותת של המתמטיקה, ואני הראיתי מזמן שכל המושג של מספרים ראשוניים הוא שטות, או במילותי שלי: "יוצא, אם כן, שבעיית החלוקה בלי שארית אינה בעיה אינהרנטית של האריתמטיקה אלא בעיה קונספטואלית של המוח האנושי". אם אתה לא מבין את זה, יש לך בעיה קונספטואלית, מ.ש.ל. |
|
||||
|
||||
נשארתי פעור פה, ואני מתחיל לסגוד לך! |
|
||||
|
||||
אפשר לשבת, אפשר לסגור פיות. |
|
||||
|
||||
לא, לא, לא נסגור! לא נעשה מה שהממסד רוצים שנעשה. האנשים שחושבים שהם יודעים יותר מכולם, ומפעילים קשר שתיקה בינלאומי כדי לשמור על שלמות ההוכחות שלהם. של מי? כן, שלהם! הם מגנים אחד על השני! זו הכל קונספירציה!!! נ.ב. הרגע מצאתי דרך קונסטרוקטיבית למצוא פתרון למשוואת פרמה. זה הכל בנוי על זה שההגדרה של החזקה כ"חזרה על כפל" היא מוטעית מיסודה. כמו כל המתמטיקה. |
חזרה לעמוד הראשי | המאמר המלא |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |