|
||||
|
||||
ראשית, ברור שזה לא פרדוקס אלא רק נראה כזה. אחרת יש סתירה במתמטיקה מה שהיה אולי משמח את גדל אבל זוכה להרבה יותר פרסום מהסרטון הזה. זה - כמו החצוצרה ההיא - נראה, לפחות לי, פרדוקסלי כי כשאני ממלא את כל השטח זה כולל את השפה, דהיינו גם היא נצבעת בעיני רוחי. אני מניח שיש איזה עניין דקיק - תרתי משמע - עם מרחב סגור או פתוח, כלומר אתה יכול להגיע עד השפה ממש בלי לגעת בשפה ממש (ויסלחו לי אלוהי הטופולגיה על הסמטוכה שאני בטח עושה) שפותר את הבעיה בלי שהיקום קורס לתוך עצמו. |
|
||||
|
||||
תנוח דעתך, לא חשבתי אף לרגע שהפרדוקס הוא במתימטיקה, אלא רק באינטואיציה שלנו :) ועד כמה שאני מבין, אתה יכול גם לגעת בשפה ממש (אך לעולם לא לעבור אותה) ועדיין לצבוע שטח סופי עם מעטפת אינסופית. ניסיתי להדגים ביצד הדמיון שלנו יכול לתפוס בקלות את העובדה שקו אינסופי שעוביו אפס יכול להיות תחום בשטח סופי, ומשם הלאה למסטיק שמציג בעיה דומה למה שתיארת1. אך במבחן התוצאה, נראה שהדוגמא שלי לא מוצלחת במיוחד... ___ 1. הפסל של תיאטרון הבימה? |
|
||||
|
||||
כשאתה צובע מבפנים, העובי של שכבת הצבע הולך וקטן ככל שמתקדמים בחצוצרה. את זה אפשר לעשות גם מבחוץ, ואז צריך רק כמות סופית של צבע. (הקטנתי את מספר סימני השאלה בכותרת על מנת שלא ליצור רושם של התלהמות מיותרת) |
|
||||
|
||||
(אין לך אופי. אני לא הקטנתי, למרות האזהרה האוטומטית.) |
|
||||
|
||||
הסבר יפה. בדיוק התחלתי להתכנס לכיוונו כשסיימתי לקרוא את התגובה הקודמת שלך. ואז ראיתי שהקדמת אותי ואפילו בתיאור מוצלח יותר. |
|
||||
|
||||
במחשבות שלי שכבת הצבע היא בעובי אפס, אבל התשובה שלך מבהירה לי שצבע בעובי אפס הוא בעצם שקוף, ויחד עם הצבע גם הפרדוקס מתאיין. ובכל זאת... |
|
||||
|
||||
ובמחשבה שלישית לא חייבת להיות בעיה לצבוע שטח אינסופי באמצעות טיפת צבע קטנה אחת כל עוד עובי שכבת הצבע הוא אפס ממש. |
|
||||
|
||||
ראש קצפת שכמותי. מי אמר שאי אפשר לצבוע משטח בגודל אינסופי? (הקליק שנשמע כאן היה האסימון שנפל) |
|
||||
|
||||
בינתיים עלה בדעתי שכשאני עונה להודעה שמדברת אל ''גאוני האייל'' אני כביכול משייך את עצמי לקבוצה הזאת. הצחקתי אותי. |
חזרה לעמוד הראשי |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |