|
||||
|
||||
זה גם עניין של השפעה סביבתית. אם אתה מדליק אש, החום והאור יתפשטו ברדיוס מסוים. דפוס ההתפשטות הזה הוא מעגל. אפקט ההתפשטות הזה נכון לא רק לאש, אלא לכל דבר שמתפשט מנקודה מסויימת סביב. בדיוק כמו אבן שנזרקת לתוך שלולית ומשפיעה על המים סביבותיה... בדפוס מעגל. צורת המעגל מתגלמת בדרכים רבות נוספות, כמו מערבולות מים ורוח, או עצמים שמעיקרם מופיעים בצורה עגולה, כמו עדשים. תהיה זו טעות לומר שהמעגל זה מושג מופשט. |
|
||||
|
||||
כל הצורות שתארת דומות למעגל, אך אינן באמת מעגל. הגדרת המעגל היא מופשטת לגמרי כבר אלפיים וחמש מאות שנה. המעגל הוא רק מושג מופשט ואינו קיים במציאות. |
|
||||
|
||||
מעגל ההתפשטות של אור הנר, איננו באמת מעגל? טווח הקשת שלי, איננו מעגל? |
|
||||
|
||||
מעגל הוא דו ממדי. אבל בוא ניקח את דוגמת האור- על מקור האור להיות נקודתי (ואין דבר כזה) ואז אם נתאר את האור כגל, מכיוון שמהירות האור בריק אחידה, נוכל לומר שהתאור המתמטי של מקומה של חזית הגל בנקודת זמן מסוימת יתאר כדור. אבל בפועל מנות האור הן בדידות ולא נראה לי שפוטון בודד יכול להתפשט לכל הכיוונים באופן כדורי. |
|
||||
|
||||
אתה יכול לומר שדוגמת האור היא אחד הגורמים הפיזיים שגרמו לאנשים לרצות לסמן ולחשב מידות כדוריות. הרי הטענה שלי היתה כי המתמטיקה המופשטת לא החלה כרעיון מופשט אלא כדרך למדוד עצמים ומושגים פיזיים מאוד. אז, נניח שאת המעגל הגדירו והחלו לחשב כשאדם רצה לדעת את גבול השטח אליו הוא יכול ללכת ולשוב לביתו ביום אחד, את השטח שעליו ניתן לצפות עליו מראש עץ גבוה או מגדל שמירה, או את השטח הבטוח שהוא יכול לכסות בקשתו. כדי לקבוע שיטת מדידה עקבית ואמינה, צריך שתהיה מדויקת. לכן ההגדרות המתמטיות תובעות דיוק. אני יכול לומר שממערב למגדל השמירה יש גבעה החוסמת ומגבילה את שטח התצפית. אבל השיטה לא מתחשבת בכך. היא צריכה להתאים גם למקום שבו אין גבעה, או שהגבעה ממזרח. ולכן אתה מגיע לקריטריונים המופשטים יותר, שהם תולדה ותוצאה של העולם המוחשי, ולא ש''איכשהו'', במקריות מופלאה, מצאנו התאמה עמומה בין השנים. |
|
||||
|
||||
חשבתי שקישרתי לך קודם לפיתגורס [ויקיפדיה]. דווקא כן רעיון מופשט. |
|
||||
|
||||
איפה הרעיון המופשט פה? אני קורא על חייו ומשנתו של פיתגורס שניסה למדוד כל תופעה פיזית באמצעות המתמטיקה. וזה בכלל בלי להזכיר שפיתגורס לא היה הראשון בעולם שחישב כמה זה שתיים ועוד שתיים, או שצייר מעגל או מפה. |
|
||||
|
||||
מתוך הערך: "הפיתגוראים לא ידעו להשתמש במילה "יחס", ולכן אמרו שהמספר עומד מאחורי התופעות, כלומר הוא הראשית. היחס המספרי הבלתי חומרי והבלתי נראה מתגלם בחומר הנראה. הדברים עצמם הם מספרים. העולם אחדותי כי הוא מספרי, שכן המספר יוצר את ההרמוניה (-חיבור) בין הניגודים הקיימים בפועל (המילטים סברו שהניגודים הם רק למראית עין). המספרים נמצאים בתוך הדברים כפי שהאל נמצא בתוך כהן בקכוס. מימזיס - חיקוי או זהות האחד עם האחר - הכהן עם האל, המספר עם התופעה." |
|
||||
|
||||
יש כאן כמה נקודות חשובות שלדעתי אינן סותרות את הטענה שלי, אלא תומכות בה: 1. הקשר בין המתמטיקה לעולם האמיתי איננו אקראי, אלא מדובר ביחס ישיר. 2. המתמטיקה היא חוקיות שקיימת בעולם. המתמטיקאים לא ממציאים אותה, אלא מגלים אותה. המתמטיקה היא תשבץ ענק וסבוך. ההגדרות והפתרונות כבר כתובים ומסודרים. לנו נותר רק לפענח ולמצוא אותם. 3. אם לקחתי 3 תפוזים והוספתי להם 3 תפוחים, יש לי 6 פירות. לא יצרתי את המספרים האלה או את המשוואה הזו, אלא האפשרות הזו קיימת בתוך ההיצע שהמספרים נותנים לי, והמעשה שלי יצר התגלמות ובחירה של אחת מן האפשרויות האלה. 4. האדם לא היה מגלה את החוקיות הזו, בלי להתחיל לספור תפוחים או מרחקים. לפי זה, המעגל איננו המצאה של המתמטיקאים שאינה קיימת בעולם האמיתי, אלא דבר שקיים במציאות. הגרסה המתמטית היא כמו תרשים ותכנית הנדסית/אדריכלית לבניין. רק שזה מביא אותנו לעניין קצת יותר עמוק - עניין הראשית. אם המספר קודם לתופעה, יש משהו שמכוון את התופעה ומכריח אותך לנהוג על פי חוקיות המספר. סוג של "איסתכל באוריתא וברא עלמא". |
|
||||
|
||||
הטענה שלך מה היא? שהמעגל הוא כן או לא רעיון מופשט? אם הוא התרשים של המציאות הוא לא קיים במציאות, כשם שתכניות הבניין אינן חלק מהבנין עצמו. |
|
||||
|
||||
הטענה שלי היא כי המעגל קיים בעולם המוחשי ולא אידאה שאינה קיימת ביקום הפיזי אלא בדמיוננו בלבד. את הדוגמאות למעגלים בעולם המוחשי כבר נתתי, ואם תאמר שאין שם את הדיוק המושלם בו משורטט המעגל המופשט, אין בכך מאומה. שהרי גם הבניין הבנוי במציאות איננו ישר ומדויק כמו התרשים, וגם חוויות האהבה והזוגיות במציאות אינן חדות, שמימיות או מושלמות כפי שמתארים אותן בדמיון - ואף על פי כן מדובר במציאות מוחשית. |
|
||||
|
||||
מעגל הוא אוסף נקודות המקיימות תנאי מסויים. משולש הוא הקטעים שעוברים דרך שלוש נקודות שמקיימות תנאי מסוים. כל דבר שאינו עונה להגדרה של מעגל אינו מעגל. לכן כל הדוגמאות שהבאת אינן מעגל. אומר זאת שוב במלים אחרות- האופן היחיד שיש לנו לתאר ולהבין מעגל הוא האופן האידאלי. המעגל הוא רק מה שבתרשים, ולא מה שבבניין. מה שיש במציאות איננו ''מעגל לא מושלם'' כי אין כזה דבר ''מעגל לא מושלם''. יש רק מעגל. במציאות יש דברים שדומים למעגל ואנחנו מחילים עליהם בהצלחה לא מבוטלת חוקיות כאילו היו אכן מעגל, אבל זהו דמיון שהכח המדמה שלנו מבחין בו, או שמא מייצר אותו, ולא דמיון בטבעם של הדברים עצמם, שכן למעגל האידאלי אין לכאורה שום קשר למציאות. |
|
||||
|
||||
אתה נותן את ההגדרה המתמטית, ואז משתמש בטיעון שתקף רק במתמטיקה כדי לטעון שזו ההגדרה היחידה. אפשר לתת הגדרות אחרות, ומחוץ לשדה המתמטיקה הדיוק המושלם ברוב המקרים איננו נחוץ ואף מקלקל. באותה מידה תוכל למצוא הרבה קווים ישרים, אותם תפסול בגלל שברזולוציה גבוהה הם לא מתאימים לקו הדק מחוט השערה, המוביל מנקודה א' לנקודה ב' - אף הן דקות מחוט השערה. וזה תקף לכל מושג מציאותי ומוחשי. ברגע שאתה מנסה להפוך אותו למושלם, יהפוך למופשט. בעולם שלנו בכל אליה יש לפחות קוץ אחד. |
|
||||
|
||||
אני לא מכיר הגדרה אחרת למעגל. אתה אומר שאפשר לתת הגדרות אחרות- נא שתף אותי באחת או שתיים. אני גם לא מכיר הגדרה אחרת לקו. אני לא מנסה להפוך מושג מוחשי למושלם. אני טוען שהמושג קיים ואינו מוחשי. |
|
||||
|
||||
היקף - כל מקום שאליו אני יכול להושיט את היד שלי מבלי לזוז מהמקום, או כל מקום שאליו אני יכול להגיע בעשר דקות הליכה מהבית. קו - פס ישר. שתי ההגדרות האלה חייבות להגיע לדיוק מושלם ועילאי, רק אם אתה מכניס אותן להגדרה המתמטית של נקודה מצומצמת עד לאין מידה. ברגע שאתה נפטר מן המתמטיקה, אתה נפטר מן הצורך בדיוק מושלם. במקרים רבים, מספיקה מראית עין על מנת להתאים להגדרה. |
|
||||
|
||||
אין כל קשר בין ''כל מקום שאליו אני יכול להושיט את היד שלי מבלי לזוז מהמקום, או כל מקום שאליו אני יכול להגיע בעשר דקות הליכה מהבית'' לבין מעגל. ברגע שאני נפטר מן המתמטיקה אין צורך בכלל להגדיר מעגל. מראית עין של מעגל אינה מעגל. מעגל הוא רק הביטוי הרעיוני - מתמטי או גאומטרי. |
|
||||
|
||||
אם כן, אסכם את חילוקי הדעות בינינו. אתה חושב שאם זה לא מדויק באופן מתמטי, זה לא מעגל. לכן אתה חייב את ההגדרה המתמטית, שמחייבת דיוק. ולכן זה לא יכול להיות קיים בעולם האמיתי, רק דומה. אני חושב שכל דבר שאנשים מכירים בו ומשתמשים בו קיים גם ללא ההגדרה המיטבית או המדויקת ביותר, ולאו דוקא בצורתו המושלמת. כדוגמה אני נותן את מושג האהבה, שיהיה נכון ומתאים גם אם האוהבים רבים וכועסים מדי פעם, ואז צצים להם כל מיני מאפייני התנהגות שלא מתאימים לאהבה דווקא. ואם נלך למקום יותר קרוב, כשאני מדבר על חפץ או מבנה רבוע, בהנחה שמכורח המציאות צלעותיו אינן ישרות בצורה מוחלטת על פי ההגדרה של קו. זה כבר לא רבוע אלא טרפז/מחומש/מתומן? זה רק מדמה ריבוע? לבוא בדרישות שכאלה, לא נקרא להיות מרובע? |
|
||||
|
||||
אתה מתאר שני דברים מקבילים. היכן חילוקי הדעות? |
|
||||
|
||||
כשאני חושב שמעגל יכול להיות מעגל גם אם הוא לא מדויק בצורה מתמטית עד לרזולוציה הגבוהה ביותר. כשאני חושב שהעולם הגשמי מציע לנו צורות ואפשרויות, רק שבעולם הגשמי קשה עד בלתי אפשרי להשיג דיוק מושלם. את הדיוק המושלם ניתן להשיג אצל המופשט. לכן אני לא חושב שמעגל נולד או קיים רק בצורה מופשטת, אלא שהמעגל המופשט הוא בבואה של המעגל הגשמי. |
|
||||
|
||||
מרובע הוא מי שמפריע לו שלא קוראים לו ריבוע? |
|
||||
|
||||
מעגל, הגדרה 1: המקום הגיאומטרי של כל הנקודות המצויות במרחק שווה מנקודה נתונה. מעגל, הגדרה 2: קבוצת הפתרונות של המשוואה 2^x-a)^2+(y-b)^2=r) עבור a,b,r כלשהם (אפשר להגביל למספרים ממשים, אפשר גם לא). מעגל, הגדרה 3: שפה של כדור במרחב נורמי. מעגל, הגדרה 4: העקומה הסגורה היחידה שמביאה למקסימום את השטח שהיא תוחמת, בהנתן אורכה. מעגל, הגדרה 5: הגבול היחיד (נגיד במטריקת L^2) של סדרת פוליגונים משוכללים בעלי קוטר זהה, כאשר מספר הצלעות שואף לאינסוף. (...ויש עוד הרבה, כנראה עשרות, הגדרות לגיטימיות) קו ישר, הגדרה 1: קבוצת הפתרונות של המשוורה ax+b=y. קו ישר, הגדרה 2: תת-קבוצה קשירה של מרחב ליניארי מממד 1. קו ישר, הגדרה 3: עקום גיאודזי על יריעה דיפרנציאלית המציידת בקשר אפיני. קו ישר, הגדרה 4: אין הגדרה. קו ישר הוא מושג אטומי הקשור למושג "נקודה" על סמך סט האקסיומות החביב עליך. קו ישר, הגדרה 5: גרף פונקציה ממשית שנגזרתה קבועה בכל תחום הגדרתה. (...ויש עוד הרבה, כנראה עשרות, הגדרות לגיטימיות) ומנקודות מבט מסויימות, מעגלים וקוים ישרים הם בדיוק אותו הדבר (יצורים המכונים לפעמים "cline", ונוטים לצוץ כשיש איזו העתקת מוביוס בסביבה). בכלל, קשה למצוא דוגמאות למונחים מתמטיים שלהם רק הגדרה אחת וקאנונית. הסיבה לכך היא שמעגלים וקוים ישרים (וחוגים לא קומוטטיבים, ופונקציות רקורסיבית, ותכונות אוניברסליות, ואינטגרלים, וגרפים, וקטגוריות קטנות...) הם בסה"כ רעיונות, ומן הסתם אפשר (וכדאי!) למצוא שפע של פורמליזציות שונות שתופסות את אותו רעיון. |
|
||||
|
||||
ניטפוק: ישר, או קו ישר אצלך בהגדרות, אינו מוגבל באורכו (לפחות במישור רגיל). לעומת זאת קו ישר רגיל בחיי היום יום יהיה מוגבל באורכו. המונח המתמטי המקביל לכך הוא "קטע". |
|
||||
|
||||
(נשאר רק עם המעגל) מצוין! תודה רבה! כל ההגדרות שהבאת אינן בעולם הפיזי. הזהות בין הביטוי של הגדרה 1. (כל הנקודות המקיימות את התנאי) לבין הגדרה 2. (קבוצת הפתרונות של המשוואה) רק מחזקת את דברי. |
|
||||
|
||||
ודאי שההגדרות הן בעולם הפיזי, הנה הן כתובות שחור על גבי עיתון בשפה פיזית שכולנו מבינים. |
|
||||
|
||||
ההגדרות לעיל מקודדות בעולם הפיזי. אבל היכן הרעיון שכל ההגדרות השונות האלה מנסות לתפוס? אני חושב שבדיון כאן שזור בלבול יסודי בין המפה לבין הטריטוריה שהיא מתארת. |
|
||||
|
||||
דוקא לא בלבול בכלל, זה שורש הדיון כאן. אני טוען (או מנסה לטעון) שיש כאן מפה ללא טריטוריה1. בדיוק כמו המפה של הארץ התיכונה שמצוירת בתחילת ספרי שר הטבעות. אריק טוען שיש טריטוריה, והיא קיימת באיזה עולם כלשהו (שלדעתי הוא לא ממש הגדיר אותו - אולי לך יש מה לומר על "היכן" העולם הזה?), מחוץ לעולם ה"פיזי" המוכר לנו. 1 הכנס אמירה פלצנית "מה שבורדיאר מכנה 'סימולקרה' בספרו הידוע2" 2 – " – "שנמצא ליד מיטתי ואני בדיוק כרגע באמצעו3" 3 כרגע == בעשרת החודשים האחרונים. |
|
||||
|
||||
אבל נראה לי שלמפה של הארץ התיכונה יש טריטוריה, גם אם אבסטרקטית: היא מתארת אספקט מסויים מחזונו של טולקין בנוגע לעולם שהוא המציא. זה די דומה לאופן בו כל אחת מההגדרות השונות למעגל מתארת אספקט מסויים מרעיון מופשט כלשהו שנמצא במחשבתם של הרבה אנשים. בלי להתחייב (כי אני לא בטוח): אני חושב שמספרים, מעגלים וקווים-ישרים "קיימים" בדיוק כמו לאקטרונים, אנרגיה וכדור הארץ. כל המונחים הללו מתייחסים למודלים מנטליים שעוזרים לנו לארגן מחשבות. באשר ליחס בין המחשבות הללו לבין "העולם הפיזי" או "העולם הממשי" - אין סיכוי שאתפתה לפתוח את קן הצרעות הזה :) |
|
||||
|
||||
אם מבחינתך כל קיומו של כדור הארץ הוא רק מודל מנטלי שלנו, אז אכן הוא דומה לקיומו של הארי פוטר. זאת דוקא גישה שדומני שעוד לא הופיעה בדיון. נראה לי שלא רק אני אלא גם אריק לא ממצדדיה. |
|
||||
|
||||
השמטתי: כל ההגדרות שע.ש. הביא אינן (מגדירות משהו שקיים) בעולם הפיזי. לא ההגדרה, אלא המוגדר. |
|
||||
|
||||
לא התכוונתי לסתור את דבריך, או בכלל לקחת צד בוויכוח. אני עדיין לא מבין מה בדיוק כל אחד מהצדדים טוען. בינתיים, אני סתם זורק הערות ביניים מהקהל. אגב, אין זהות בין הגדרה 1 לבין הגדרה 2 (או בין אף הגדרה לבין אף הגדרה אחרת). כל אחת מהן מדברת על עולמות שונים. ההגדרה הראשונה עוסקת בנקודות במישור, וההגדרה השניה עוסקת במספרים ממשיים. ואמנם אפשר למדל נקודות במישור באמצעות מספרים ממשיים, וגם אפשר (עם קצת מאמץ) למדל מספרים ממשיים באמצעות נקודות במישור - אבל בכל זאת, מדובר באובייקטים שונים לגמרי. כדי לחדד את ההבדל, אפשר להכליל: ההגדרה הראשונה נותרת משמעותית והגיונית גם כאשר מדובר על מרחב גיאומטרי כלשהו (לאו-דווקא מישור), וההגדרה השניה נותרת משמעותית והגיונית גם כאשר מדובר על אברי חוג כלשהו (לאו-דווקא ממספרים ממשיים). אבל עכשיו כבר אי אפשר ממש למדל אף אחד מהעולמות באמצעות השני, ושני המעגלים לא רק שאינם זהים - הם אפילו לא דומים. ועדיין, אני חושב שרוב המתמטיקאים יסכימו בלב שלם שבשני המיקרים מדובר במעגלים. |
|
||||
|
||||
עדיין תודה גדולה. גם לא הכרתי את ההגדרות השונות. וגם עזרת לחדד את רמת ההפשטה של המושג ''מעגל''. כשאנחנו מדברים על קבוצת המספרים המקיימת א' ב' קל יותר להבין שאנחנו מדברים על רעיון מופשט לחלוטין. |
|
||||
|
||||
אני מסב את תשומת לבך (וגם של אריק), שאשר ההגדרה הראשונה שלך מוגדרת לאו-דוקא במישור, התכונה ה"אבסולוטית" לכאורה לפיה היקף המעגל חלקי קוטרו הוא 2*pi, מתפוגגת באויר כעשן. אז אריק, בעולם המושלם שלך, היחס בין מעגל לקוטרו קבוע או לא? ואם לא - האין זה מחליש את הטענה שלך שזוהי יישות מוחשית "אובייקטיבית" ומוגדרת היטב? |
|
||||
|
||||
נכון. אני מוסיף: עבור חלק מהדברים שההגדרות הנ"ל מתארות, אין בכלל משמעות ל-קוטר" או ל-"היקף". |
|
||||
|
||||
אני דיברתי כל הזמן על האידאה של מעגל אוקלידי, כזה שלא השתנה כלל ב 2500 השנים האחרונות. ההכרות שלי עם גאומטריה לא אוקלידית שטחית וחלקית ביותר, אבל קיבלתי בשמחה את ההרחבות, משום שהן מציגות דבר יפה - שיש במתמטיקה גישות שונות להביע את אותה אידאה. בעולם האוקלידי (הלא מוחשי לחלוטין, אבל המאוד אובייקטיבי) היחס בין הקף מעגל לקטרו קבוע. אני לא רואה בעייתיות בכך שבמערכת אחרת, לא אוקלידית, היחס אינו קבוע. מעגל אוקלידי ומעגל לא אוקלידי אינם אותו דבר משום שהמעגל האוקלידי מקיים תנאי נוסף (הנקודות נמצאות על מישור לא מעוקם). אז אפשר לטעון טענה מטריאליסטית שכל המערכות הלוגיות- האוקלידית וכל האחרות, אינן קיימות כלל בפני עצמן, אלא רק כביטוי של הלוגיקה שאנחנו מפעילים בתהליכי החשיבה הביוכימיים שלנו. שההסכמה שלנו להגדיר מעגל שאנחנו מתייחסים אליו בתקשורת בינינו לא גורמת לכך שיש באמת מעגל היכנשהו. אבל אז אתה חייב לטעון כך לגבי כל הלוגיקה כולה. משמע שגם הסיבתיות עצמה אינה קיימת בשום אופן, ואנחנו נשארים עם יקום הבלוק המשעמם והדטרמיניסטי לחלוטין. |
|
||||
|
||||
לטענות על מעגלים(*) יש מעמד אמפירי מוצק לפחות כמו על טענות על מסלולים של כוכבי לכת. האם לדעתך תופעה כגון "זמן ההקפה של פלוטו הוא 248 שנים" הוא משהוא ש"קיים בפני עצמו", או "ביטוי של הלוגיקה שאנחנו מפעילים בתהליכי החשיבה הביוכימיים שלנו"? (*) טוב, אליפסות |
|
||||
|
||||
השני |
|
||||
|
||||
כתבת למעלה "דברים שקיימים במציאות הפיסית - לדוגמה כוכבי הלכת נעים במסילותם". למה התכוונת? |
|
||||
|
||||
כוכבי הלכת קיימים במציאות הפיסית, והם נעים בתנועה די מורכבת, שמשום מה ניתן לחזות אותה אם משתמשים בחוקי קפלר [ויקיפדיה], שיש להם ניסוח מתמטי. |
|
||||
|
||||
העדות העיקרית על כך שכוכבי הלכת קיימים ונעים, מסתמכת על חוקי האופטיקה הגאומטרית. לא הבנתי למה לדידך מותר להסיק מהאופטיקה הגאומטרית על המציאות אבל מחוקי קפלר (או ניוטון) אסור. |
|
||||
|
||||
להיפך- לטעמי מותר, וזה הפלא. |
|
||||
|
||||
אז לא הבנתי למה המסלול האליפטי של פלוטו קיים לדידך במציאות אבל זמן המחזור של המסלול הזה (שנובע בדיוק מאותו היסק) אינו קיים במציאות. |
|
||||
|
||||
שניהם אינם קיימים במציאות הפיזית. המסלול האליפטי של פלוטו וזמן ההקפה שלו- שניהם פרשנות שלנו על המציאות. אבל למושג האליפסה יש קיום מסוג אחר. זה מושג שהשימוש בו מאפשר לנו לחזות את מיקומו של פלוטו בדיוק נמרץ. לכאורה נראה כאילו היקום פועל תחת איזו מערכת הפעלה מתמטית שנמצאת ביסודו, אבל מחוצה לו. |
|
||||
|
||||
קשה מאד להבין אותך. כתבת שהמסלולים של כוכבי הלכת קיימים במציאות. תוכל לפרט בדיוק מה ההגדרה שלך לאותם מסלולים שקיימים במציאות, ולמה הם מציאותיים יותר מזמן הקפה ממוצע. |
|
||||
|
||||
הטענה הזו היתה דווקא שלך (בתגובה 677875) ולא שלי. אני טענתי שלאידאה של מעגל (או אליפסה) יש קיום כלשהו שאינו פיסי. מסלולם של כוכבי הלכת דווקא אינו יש קיים לדעתי. |
|
||||
|
||||
כתבת "כוכבי הלכת קיימים במציאות הפיסית, והם נעים בתנועה די מורכבת" בתגובה 677886 - כנראה שפירשתי בצורה לא נכונה את הסייפא שבמשפט. אני אעצור כאן. |
|
||||
|
||||
זה הרעיון שעומד מאחורי סדרת הסרטים ''מטריקס'', רעיון השאוב מן הקבלה. |
|
||||
|
||||
כדאי אולי לומר שכוכב לכת שנע במסלולו לא "מציית" לחוק שאומר לו "אנא נוע באליפסה שמשוואתה כך וכך". הדבר היחידי1 שהכוכב מציית לו, או מושפע ממנו, בכל רגע ורגע, הוא שיש כח שמושך אותו אל השמש. וכשמושכים אותו, הוא נמשך. זה הכל. זה כל מה שהכוכב הזה "יודע" ומציית לו. ברגע שהכח הזה קבוע, ותמיד באותו כיוון2 -*ניתן* בשפה שמתארת חוקים לנתח את ההתנהגות הזאת, לפשט אותה לכדי חוקים בודדים, ומהם לחזות את המסלול. זאת מהסיבה הפשוטה שבגלל שיש כאן דפוסים קבועים ולא אקראיים, ניתן לומר עליהם משהו יותר מ"אפס מידע" כדי לאפיין אותם. אבל החוקים האלה מתארים את המציאות של הכוכב, לא מתווים אותה. המציאות היחידה של הכוכב היא הכח הפועל עליו בכל רגע ורגע. אין לו שום חוזה ושום התחייבות מעבר לזה. בדיוק כמו שגרגר בדלי חול שנשפך לערימת חול על הרצפה לא יודע כלום ואין לו שום חוזה עם התפלגות גאוסית שמתארת את הסיכוי שלו להיות במרכז הערימה. הוא בכל ננו-שנייה זז בדיוק על פי הכוחות שהפעילו עליו הגרגרים סביבו והאדמה מתחתיו. הוא לא מציית לשום אספוננט. האקספוננט, מצליח להסתכל על ההתפלגות הלא אקראית של מיליוני גרגירים ולומר עליהם משהו סטטיסטי - שוב, כי כמות המידע שיש כאן גדולה מאפס. רק בהינתן אפס מידע בלתי אקראי ייווצר מצב שלא ניתן לומר עליו כלום3. 1 בקרוב ראשון ממש טוב לצורך הדיון, שים בצד יחסות כללית ושאר הפרעות. 2 שוב, תנסה רגע לתאר לעצמך יקום שבו הכח הזה משתנה כל הזמן ולכל הכיוונים, ולא תגיע לשום מקום חוץ מתוהו ובוהו כנראה. יש כאן מערכת עם שמש אחת במרכז. זה הכל. העצם היחיד (וכמעט נקודתי מבחינתו) שקיים מבחינת כוכב הלכת הזה. אתה יכול לתאר איזו אינטראקציה ביניהם שאין לה שום דפוס? שמשתנה כל ננו-שנייה למרות ששני העצמים המדוברים כמעט באותו מצב? 3 טוב, אפילו האמירה שזה ממצב אקראי היא משהו. אבל משהו די קטן. |
|
||||
|
||||
אני מסכים ב-100% עם הטענה שכוכב-הלכת לא מציית לחוק שאומר לו "נוע באליפסה". אבל, באותה מידה, הוא גם לא מציית לחוק שאומר לו "הימשך לשמש". הכוכב לא מציית לאף חוק. גם חוקי קפלר, גם חוקי ניוטון וגם משוואות השדה של אינשטיין - הם רק תיאורים של המציאות, והם לא מתווים אותה. שים לב, התמונה המנטלית שאתה מצייר ("יש כח שמושך אותו") אפילו לא עולה בקנה מידה עם התאוריה הפיזיקלית הכי טובה שלנו כרגע, לפיה הכוכב פשוט נע בקו ישר ובמהירות קבועה (אך על יריעה לורנציאנית). מחר אולי מישהו חכם יצייר תמונה אחרת לחלוטין, ומוצלחת יותר. אבל גם זו לא תהיה ה-"מציאות", אלא מודל. וכל המודלים שגויים - גם בפיזיקה. שוב נראה לי שאני מזהה בלבול של המפה עם הטריטוריה, של המודל עם המציאות. במציאות אין כוחות, אין "מרחב זמן", אין פוטונים ואין קוורקים. כל אלה הן הפשטות מומצאות. חכמות, מועילות, אלגנטיות - אבל המצאות. בדיוק כמו מספרים, מעגלים וקווים ישרים. ניסוי מחשבה: פגשנו תרבות חייזרית. מסתבר שאין להם שום טכנולוגיה שאנחנו לא מבינים היטב, וגם להפך. בנוסף מסתבר שאין שום ניסוי שהם יכולים לחזות את תוצאותיו טוב מאיתנו, וגם להפך. הפיזיקה שלהם טובה בדיוק כמו שלנו. אבל שונה לחלוטין. אין להם" חלקיקים", אין להם "מרחב" ואין להם" כוחות". הם טוענים שאנחנו סתומים ומוזרים, ושהמציאות היא בעצם גרף שכמעט כל אחד מ-919 קודקודיו מאופיין על ידי תהליך חישובי ספציפי ושאר הקודקודים הם "מקורות" של אינפורמציה ("תנאי ההתחלה"). את כל הניבוים וההסברים על עולם התופעות (כולל דברים שאנחנו מתארים כ-"מרחב", "זמן" ו-"תנע") הם מצליחים לגזור מזרימת האינפורמציה בגרף. הם טועים? אנחנו טועים? מישהו כאן בהכרח טועה? |
|
||||
|
||||
מצוין. עכשיו תעשה את הצעד הנוסף. יש אינטראקציה בין מסה אחת (השמש) למסה שניה (פלוטו) ומשום מה הדפוס של האינטראקציה הזו, ושל כל אינטראקציה אחרת בין מסות, הוא דפוס אחיד בעל ביטוי מתמטי מדויק. למה? יקום הבלוק לא זקוק לסדר הזה, לסיבתיות, לחוקים. הוא יכול היה באותה מידה להיות כאוטי. אם תאמר שאותו דפוס אחיד בעל ביטוי מתמטי הוא רק דרך שלנו להבין את המציאות, ואינו קשור לדברים כפי שהם, נשאלת השאלה איך אנחנו מסוגלים לנבא באמצעות אותם ביטויים מתמטיים בדיוק נמרץ היכן ימצא פלוטו בעוד שבעים שנה ויומיים? מדובר כמובן במודל, והרצה קדימה של המודל תפיק את התוצאה המבוקשת, אבל עולות שתי תהיות מהותיות - מדוע יש בכלל מודל שמתאים? - מדוע זה נראה שאנחנו *מגלים* את המודל ולא ממציאים אותו. שהעץ נופל ביער גם אם לא מחאנו כף אחת1? ____________ 1 ואולי לא? אולי באמת כל היקום בסופרפוזיציה עד שאנחנו צופים בו ומשליטים בו סדר באמצעות תודעתנו המקריסה? |
|
||||
|
||||
עצם העובדה שאתה מסוגל להבחין בפלוטו כתופעה מובחנת היא ביטוי של "סדר". עצם העובדה שאתה, כיצור שהוא תוצר של תהליך אדפטיבי (ועוד אינטליגנטי!) בכלל קיים כדי להבחין במשהו, היא ביטוי של סדר. אז יש עולם מסודר, וזה אכן מוזר. ואגב - חידת ה-"סדר" לא קשורה לכאוס, אלא לאנטרופיה: למה היא לא מקסימלית? אני לא יודע, אבל אני חושב שזו שאלה מאותו הז'אנר של "למה קיים משהו, במקום שלא יהיה קיים כלום?". אלה שאלות עמוקות מצד אחד, אך שגויות בעליל מצד שני (כי קשה אפילו לדמיין איזה סוג של תשובה אפשר לתת להן - ובמידה רבה, זה מעקר אותן מתוכן). כנראה שמוטב להניח להן עד להודעה חדשה. באשר למתמטיקה, ושימושיותה בפיזיקה - בעיני אין כאן שום חידה: (1) בהנתן שמישהו נמצא כדי להבחין בתופעות - אז אותו מישהו בהכרח מצוי בעולם עם אנטרופיה נמוכה. (2) תופעות בעולם עם אנטרופיה נמוכה, בהכרח אפשר למדל באמצעות חוקים, יחסים ודפוסים (למשל, בגלל הקשר בין אנטרופיה לבין סיבוכיות קולמוגורוב). (3) מתמטיקה היא שפה שמלכתחילה הונדסה על ידי בני האדם כדי לנסח ביעילות מחשבות ורעיונות בקשר לחוקים, יחסים ודפוסים, כך שמן הסתם היא כלי מוצלח לתיאור תופעות כנ"ל. |
|
||||
|
||||
בעולם של אנטרופיה הולכת וגדלה נראה שהחיים יוצרים כיסים של סדר, והחיים התבוניים על אחת כמה וכמה. שני חלקים קשים לי בתשובה שלך- במעבר מ 2. ל 3. האם היחס פי לא קיים בהעדר האדם שיחפש וימצא אותו? האם כאשר אתה אומר שבהכרח אפשר למדל זה לא אומר שהמודל הוא תוצאה בלתי נמנעת של התופעה ועל כן באיזה אופן חלק ממנה? וב 3. ה"מן הסתם" קשה לי- מדוע אתה מקבל כמובן מאליו שהמתמטיקה מאפשרת ניבויים בעולם הפיזי? |
|
||||
|
||||
ראשית, בעלי חיים (גם תבוניים) אינה מפרים את החוק השני של התרמודינמיקה, וכמו כל דבר אחר, הם תורמים לעליית האנטרופיה בהתאם לאנרגיה החופשית שהם מנצלים. לסדר הלוקלי סביבם יש "מחיר" כבד גלובלית. ושנית - אני לא מבין את כוונתך. האם אתה טוען שקיום בעלי חיים מסביר את האנטרופיה הנמוכה, במקום להיות מוסבר על ידה? אם כן, זו טענה שעומדת בסתירה גמורה לכל התאוריות הפיזיקליות שאני מכיר, כולל הרדיקליות והספקולטיביות ביותר מבינהן. אני מוצא את השאלה שלך לגבי פאי מוזרה. גם כי אתה כותב "היחס פאי", בעוד שעבורי פאי הוא קודם-כל המחזור של פונקציית האקספוננט ההולומורפית (undoubtedly the most important function in mathematics, שנו חז"ל), ורק כדרך אגב, כפועל יוצא וכאנקדוטה קטנה - גם היחס בין היקף מעגלים לקוטרם במישור האוקלידי. אבל גם, ובעיקר, כי "פאי" הוא המשגה, רעיון. מנקודת המבט שלי, אכן עושה רושם שהוא רעיון מוצלח, ונשמע לי סביר שישויות תבוניות באשר הן יעלו אותו בעצמן. במובן הזה "הוא לא תלוי בבני אדם". אבל מה שווה בכלל נקודת המבט הזו שלי? יכול להיות שכל הישויות האולטרה-אינטליגנטיות ביקום שנחשפו במקרה לקונספט של פאי, מצאו שמדובר ברעיון מגוחך, שרירותי וחסר תועלת. טיפוסי לאופן החשיבה של שימפנזות למינהן. באשר ל-"המודל הוא תוצאה בלתי נמנעת של התופעה", אני לא חושב כך. באיזה תנאים לתופעה נתונה יהיה קיים רק מודל אחד המתאר אותה באופן מיטבי? צריך להזהר כאן עם המובנים של המונחים בהם משתמשים, אבל אני משער שכל ניסיון ליצוק בהם תוכן מדוייק המתאים להקשר הפיזיקלי, יוביל למסקנה שאין תנאים כאלה, וכל מערכת אפשר למדל באינסוף דרכים שונות אך שקולות (לפחות פרטו). לבסוף, אני לא חושב שהמתמטיקה מאפשרת שום דבר. "מתמטיקה" היא סתם אוסף של קונבנציות, סימונים והמשגות המשמשים לבטא כל מיני רעיונות ומחשבות. כל מה שאפשר לעשות במתמטיקה, אפשר לעשות גם בלעדיה - נגיד באמצעות משפטים ארוכים ומסורבלים בעברית. אם יצא שהמציאות הפיזית היא מספיק סדורה כדי שניבויים של חלקים ממנה הם אפשריים, אז מה זה משנה באיזו קונבנציה משתמשים כדי לערוך אותם? ואם כך, עדיף לפתח קונבנציה נוחה, ואפשר לקרוא לה "מתמטיקה". |
|
||||
|
||||
בעלי חיים ואנטרופיה- זו היתה הערה תמימה שקראת בה יותר מכפי שהיה בה. אני מקבל את העמדה שלך שהמתמטיקה היא שפה, אבל הדברים שהשפה הזו מתארת - אותם רעיונות כמו מעגל - אינם קיימים ביקום הפיזי. משום מה הרעיונות הללו, שאינם קיימים ביקום הפיזי, מצליחים לתאר היטב, עד כדי ניבוי מדויק, את החוקיות בהתנהגות של היקום הפיזי. המתמטיקה היא הקונבנציה שהמצאנו כדי לדבר על הרעיונות הללו, אבל השאלה היא על הרעיונות עצמם. כשאתה אומר שהמציאות הפיזית היא מספיק סדורה זה אומר שיש עקרונות/כללים/חוקיות שהיא סדורה על פיהם, ואני שואל על המהות של אותם עקרונות והקשר בינם לבין הרעיונות שהמתמטיקה מדברת עליהם. |
|
||||
|
||||
למה בדיוק אתה מתכוון, כשאתה כותב "המהות של אותם עקרונות"? אני חושב שהתייחסות שלך ל-"חוקיות שהיא (=המציאות) סדורה על פיהם" היא סוג של הנחת המבוקש. להבנתי, המציאות סדורה. נקודה. לא "סדורה על פי חוקיות". הסדירות מתבטאת בכך שלתיאור עולם התופעות יש1 סיבוכיות קולמוגורוב נמוכה. לטענה שעולם התופעות באמת-באמת נוצר על ידי איזשהו תהליך מכניסטי אין בסיס של ממש (אני חושב שאולי הטענה הזו אפילו לא מתקמפלת, ומכילה חוסר-עיקביות פנימי). אבל אפילו אם כן יש "תהליך אמיתי" כזה, נראה לי שצריך לגייס כמות נכבדה של היבריס כדי לטעון שהתאוריות שאנחנו מעלים בעצמנו לגבי המציאות דומים לו. אם כך, כשאתה צופה במציאות, מנסח חוקים, ורואה שהחוקים מתאימים למציאות - אל לך לקפוץ למסקנה ש-"המציאות סדורה על פי החוקים האלה". להפך. מכיוון שהמציאות סדורה, הצלחת לנסח חוקים שמתארים אותה בקרוב. אבל החוקים האלה הם פרי דמיונך, ולא יותר. המציאות אינה סדורה לפי החוקים הללו, אלא אתה משתמש בחוקים כדי לארגן עבור עצמך את המחשבות אודות המציאות. 1 הכל בערך, ובקווים כללים. הידיים שלי כבר כואבות מרוב נפנופים, ובהחלט ייתכן שאני מחמיץ משהו או לגמרי טועה. |
|
||||
|
||||
אני חושב שאנחנו מתקדמים יפה. לפחות אני מצליח להתקדם בהבנה של מה שאתה אומר, וזה עוזר לי לנסח את העמדה שלי באופן אולי מובן יותר. >> אתה משתמש בחוקים כדי לארגן עבור עצמך את המחשבות אודות המציאות. מוסכם. הוא שאמרנו שהמתמטיקה היא שפה שהמצאנו כדי לנסח רעיונות לוגיים מסויימים שיש לנו. >> המציאות סדורה. נקודה. לא "סדורה על פי חוקיות" זה קשה לי. כשאתה אומר סיבוכיות קולמוגורוב נמוכה אני חושב שמובלע בזה שישנם כללים כלשהם (שאיננו יודעים אותם, ואולי גם איננו יכולים לדעת אותם) שהמציאות סדורה על פיהם. אם אין כללים היא לא יכולה להיות סדורה, האין זאת? ביסודו של כל סדר יש כללים שעל פיהם הוא מסודר, שאם לא כן הוא לא סדר. תסביר לי את זה. >> צריך לגייס כמות נכבדה של היבריס כדי לטעון שהתאוריות שאנחנו מעלים בעצמנו לגבי המציאות דומים לו. מסכים גם כאן. השאלה שאני מעלה היא כללית יותר. אני טוען שהבסיס הלוגי של השפה המתמטית שלנו, והאידאות שאנחנו מגדירים באמצעותה (כמו מעגל)- אין להם שום קיום פיזי. באותו אופן אני טוען שהכללים האמיתיים שעל פיהם המציאות הפיזית סדורה, בהנחה שיש כאלו, גם להם אין קיום פיזי. ולמרבה הפלא אנחנו מסוגלים לנבא את ההתנהגויות הפיזיות (מסלולי כוכבי הלכת) באמצעות הכללים הלא פיזיים (חוקי קפלר). אני שואל כמו בתגובה 677935 מהי המהות של אותם כללים אמיתיים? |
|
||||
|
||||
מסיבוכיות קולמוגורוב של אובייקט כלשהו, אי אפשר להסיק דבר על האופן בו האובייקט נוצר. המחרוזת 0000...0 (אלף פעמים 0) יכולה הייתה להווצר על ידי התוכנית "הדפס 0...0000000000", או על ידי התוכנית "בצע לולאה 1000 פעמים, ובכל איטרציה הדפס 0", או ע"י ריצה ממוזלת של התכנית "הטל מטבע 1000 פעם, והדפס 0 כשיוצא עץ" (ומן הסתם יש עוד אינסוף תכניות אפשריות). כל מה שצופה יכול לדעת הוא שקיים עבור המחרוזת תיאור קצר ואלגנטי. שהיא "סדורה". אבל הוא לא יכול לדעת שום דבר על הכללים שיצרו אותה. לכאורה, אפשר לחשוב שטיעון ברוח התער של אוקהם עשוי להוציא אותנו מהברוך הזה (תמיד נעדיף את התכנית הכי פשוטה, או משהו כזה). אבל זו דרך ללא מוצא. ראשית, כי אין קריטריון אולטימטיבי לפשטות (איזו מהתוכניות לעיל "פשוטה יותר"?). שנית, כי אנחנו עוסקים בניסיון לבסס עמדה ריאליסטית, ואפילו אם היה בנמצא קריטריון אולטימטיבי לפשטות, לא היה בכוחו לזהות את התהליך ה-"אמיתי" (נאמר שיוצא שהתכנית השניה היא "הפשוטה ביותר", ואתה בוחר בה כתאוריה הפיזיקלית האמיתית שלך. עדיין ייתכן שהתכנית הראשונה היא זו שרצה בפועל, והבחירה שלך שגויה). ושלישית, סיבוכיות קולמוגורוב של אובייקט לא תלויה (בערך...) בבחירה במכונת טיורינג כזו או אחרת. הן כולן שוות-מעמד, וכל בחירה משנה לחלוטין את הפרספקטיבה באשר לאיזה תהליך "אלגנטי ופשוט" ואיזה "מסורבל ומכוער". זה לדעתי מספיק כדי לדכא לגמרי את השאיפה לריאליזם. (וכל זאת מבלי להזכיר בכלל את האפשרות של מודלים חישוביים שאינם שקולים למכונת טיורינג... אבל נראה לי שאין טעם בכיוון הזה, בהקשר שלנו) |
|
||||
|
||||
תוספת: כתבתי "...הוא לא יכול לדעת שום דבר על הכללים שיצרו אותה.", ואני רוצה להוסיף "או אם בכלל היו כללים כאלה". למשל, בדוגמת-הצעצוע בהודעה לעיל, קשה לומר שמחרוזת שנוצרה על ידי התכנית "הדפס 0...0000000000" נוצרה על סמך כללים כלשהם. ויותר מזה, כאשר עוסקים במטאפיזיקה, ה-"מציאות עצמה" פשוט נתונה. "היש ישנו, והאין איננו". סה-טו. אין לנו מושג (טוב, אין לי מושג) מאיפה היא צצה פתאום, ואם היה מעורב בכך תהליך מכניסטי-חישובי או לא. כלומר אולי המחרוזת "00000....0" נוצרה בכלל על ידי קסם. אבל הקסם יצר מחרוזת סדורה, ולכן יש לה סיבוכיות קולמוגורוב מוגדרת היטב למרות שהיא לא נוצרה על ידי אף מכונת טיורינג. |
|
||||
|
||||
התוספת חשובה ביותר, כי אחרת משתמע שיש כללים כלשהם, לא משנה איזה, שגרמו לסדר. אבל במשפט האחרון אתה שוב פותח לי פתח- "אולי המחרוזת... נוצרה בכלל על ידי קסם. אבל הקסם יצר מחרוזת סדורה". לא אכפת לי מה יצר משהו סדור, אם זה תכנית מחשב או קסם, העיקר שהמשהו הסדור נובע ממשהו, ולא נוצר סדור באקראי. שהרי אם נוצר סדור באקראי הוא לא סדור, הוא אקראי, הלא כן? |
|
||||
|
||||
בעצם ע.ש. ענה בכיוונים מאד דומים לשלי לאורך הפתיל. יקום הבלוק לא זקוק לכלום. אולי יש יקום בלוק אחר כאוטי. ביקום בלוק כאוטי אין התפתחות, אין כוכבים, גלקסיות, אנשים והשאלה "אייה פלוטו?" לא תישאל לעולם. ביקום בלוק שאינו כאוטי - יש מודל שמתאים. והמודל מתאים (עונה על השאלה הרלונטית שלך) בגלל שיש דפוס כלשהוא, אינפורמציה כלשהיא, ניתנת לתאור. למה אתה חושב שהמודל שלנו להבנת המציאות "אינו קשור לדברים כפי שהם" - זה איש קש עצבני. ודאי שהוא קשור, הוא נבנה על פי נתונים שנלקחו מהמציאות, הוא לא הומצא כשלעצמו במנותק ממנה. יש, אגב, כמו שאמרנו, זיליון מודלים אחרים שאכן לא מתארים את המציאות ולא קשורים אליה. וכיון שהוא נבנה על פי המציאות, הוא עושה את מה שבנו אותו לעשות: לתאר את המציאות, גם באמצעות ניבויים. למה אנחנו "מגלים" את המודל? בגלל שהוא מתאר את המציאות. ועל ידי גילויי המציאות שמהם אנחנו מפיקים נתונים למודל, אנחנו מגלים מה המודל הנכון. כהערת צד, המתימטיקה כשפה לוגית יכולה "לגלות" דברים מתוך עצמה, כי יש לה כללי גזירה לוגיים שגורמים לכך שבהינתן אכסיומות, התוצאות שנגזרות מהן אינן אקראיות אלא מוגדרות היטב, לפעמים יחידות. אז במובן מסוים אתה "מגלה" אותן מתימטית - זה קשור יותר לתת-פתיל שהיה לי כאן מול מי שקישר למאמר בבלוג של גדי אלכסנדרוביץ'. אבל זה שונה מהגילוי של מודל פיזיקלי - זה תמיד1 נשען על תוצאות אמפיריות מסוימות, ומתגלה באמצעותן. 1 אל תדחק אותי בבקשה לפינת הסופר-מיתרים, כבר היה כאן דיון שלם על כך שהיא מאתגרת את התמיד הזה. |
|
||||
|
||||
המודל שלנו לתאור המציאות הפיזית משתמש באידאות כמו "אליפסה" שאין להן זכר ביקום הפיזי, ובכל זאת הוא מצליח למדל את העקרונות שעל פיהם המציאות הפיזית מתנהלת. ואני רוצה לשאול על העקרונות האלה, כמו כח המשיכה: כח המשיכה מתנהג באופן מאוד עקבי, על פי עקרונות שניתנים לניסוח מתמטי מדויק. אבל אנחנו היום אנחנו קוראים לזה כח המשיכה, ומחר יכול להיות שנקרא לזה אחרת. לכן אני רוצה להשאר עם חוקי קפלר, שלא שואלים אילו כוחות פועלים שם אלא רק מתארים את התוצאה- תנועת הכוכבים. חוקי קפלר מתארים את תנועת הכוכבים עבורנו. אבל איכשהו יש באמת איזו חוקיות בתנועת הפלנטות, הלא כן? המודל שלנו לא מתאר מציאות אקראית אלא מציאות מסודרת. ואותו סדר, מה הוא? אני לא שואל מדוע הדברים מסודרים, איך הם מסודרים או כמה הם מסודרים. אני שואל מהי המהות של אותה חוקיות של הסדר. |
|
||||
|
||||
התהיה השניה שלך אמורה לענות על הראשונה. המודל מתאים כי לא אנחנו המצאנו אותו בניסיון להפעיל משהו, אלא גילינו אותו בניסיון לבדוק איך משהו פועל. פשוט הסתכלנו על הפעילות ויצרנו תרשים שלה. או שהשאלה שלך היא אחרת: למה זה פועל דווקא כך ולא אחרת? - כמו ששאל צ'יפופו: למה הירח צהוב והגשם רטוב? |
חזרה לעמוד הראשי |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |