בתשובה להאייל האלמוני, 06/09/09 11:40
אשנב למתמטיקה 524043
מכך נובע שהאקסיומות של ZFC הן תיאור של כמה אובייקטים שונים מהותית - למשל, שנבדלים זה מזה בתכונה של השערת גולדבך. מה שאתה רוצה לומר הוא שעבור האובייקט "המספרים הטבעיים" היא נכונה, ומה שאני אומר הוא שאי היכיחות אומרת שיש עוד אובייקט ("המספרים הטבעיים המשונים") שבו היא לא מתקיימת. אין לכך קשר לעולמות, אלא לכך שיש המון אובייקטים מתמטיים מעניינים ויכולת התיאור שלנו אותם היא תמיד קצת מוגבלת.
אשנב למתמטיקה 524048
האם הטענה שלך לגבי קיום אובייקט "המספרים הטבעיים המשונים" באמת נובעת מאי היכיחות? לא יכול להיות שאין שום אובייקט כזה ובכ"ז השערת גולדבך מתקיימת? אני לא מתכוון לאובייקט המלאכותי "המספרים הטבעיים עם ZFC ועם השערת גודלבך" אלא לאובייקט "משונה" עליו מתקיימות רק ZFC.
אשנב למתמטיקה 524056
כן - על פי משפט השלמות של גדל (לא לבלבל עם משפט אי השלמות) לכל תורה עקבית קיים מודל. אם ZFC לא מסוגלת לא להוכיח ולא להפריך את השערת גולדבך, *ואם* היא עצמה עקבית (זו כבר סוגיה לדיון נפרד), אז גם ל"ZFC עם השערת גולדבך" יש מודל, וגם ל"ZFC עם שלילת השערת גולדבך" יש מודל. כלומר, קיימים שני אובייקטים מתמטיים שונים ששניהם מקיימים את ZFC, אחד מהם מקיים את גולדבך והשני לא מקיים את גולדבך.

אולי ניסית לנגוד מראש את מה שאמרתי כאן עם מה שאמרת על אובייקט שמקיים "רק" את ZFC, אבל אני לא מבין מה המשמעות של זה. השערת גולדבך היא שאלת "כן/לא". כל אובייקט שעבורו יש בכלל הגיון בשאלה הזו (יש מושג של מספר זוגי, של ראשוני וכו') או שמקיים אותה, או שלא מקיים אותה. אין מצב ביניים. אמנם, אני מאוד לא בקיא בלוגיקה מתמטית אז קח בחשבון שייתכן שאני מקשקש פה במידה מסויימת.
אשנב למתמטיקה 524125
תודה.

האם מלבד תורת המספרים הטבעיים ("הרגילים") מוכרים עוד מודלים?
אשנב למתמטיקה 524132
אתה נכנס כאן לתחום שאני לא מבין בו כלום. התשובה שאני כן מכיר היא שיש הוכחה שקיימים מודלים לא סטנדרטיים, אבל קשה לתת תיאור מפורש שלהם. מרחיבים על זה בויקיפדיה האנגלית (Peano axioms [Wikipedia]) בחלק של Nonstandard models.
אשנב למתמטיקה 524138
שוב, תודה.

חזרה לעמוד הראשי

מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים