|
||||
|
||||
איך תסכים על נציג מוסכם בלי לדבר? איך תזהה את מחלקת השקילות? |
|
||||
|
||||
מתאמים מראש על אין סוף (?) אפשרויות? והתשובה לשאלה השניה? |
|
||||
|
||||
זאת חידה, כן? אתה לא אמור להתעסק עם זה. הרי גם אי אפשר להודיע לאין סוף אנשים משהו בזמן סופי, מהירות האור וכל זה. התשובה לשאלה השנייה היא במחלקה של גדי. כנראה שיש משהו בתורת הקבוצות שמלמדת אותך איך לבנות מחלקות שקילות כאלו ולוודא שלא פספסת כלום. |
|
||||
|
||||
אני חושב שיש הבדל בין להניח זיכרון גדול כרצונך לבין להניח זכרון אין סופי. את הראשון בד"כ מקבלים בחידות כאלה, את השני? |
|
||||
|
||||
אם מדובר בחידה הכוללת את המושג אין-סוף נראה לי שקשה להמלט מכך. לדוגמה, נניח שלצורך הפיתרון אני דורש למספר כל אחד מהנוכחים באופן סידורי ( בן-מניה, כן?) ודורש מכל אחד לזכור את המספר שלו. תגיד לי שהפיתרון הזה לא בסדר משום שלכל זיכרון מוגבל N אפשר למצוא אדם שצריך N+1 ביטים כדי לזכור את המספר הסידורי שלו? |
|
||||
|
||||
עדיין לכל אחד יהיה זכרון בגודל מוגבל (גדל והולך, אבל עדיין מוגבל), אבל אם תוסיף שכל אחד לא מכיר רק את עצמו והמספר שלו, אלא גם את כל האחרים והמספר שלהם, אז נראה לי שהוספת דרישה חמורה יותר. |
|
||||
|
||||
וזה שצריך זמן אינסופי לתאם ביניהם, לא מפריע לך? |
|
||||
|
||||
לא במיוחד (זה פועל יוצא של תיאום בין אין סוף אנשים). |
|
||||
|
||||
ופועל יוצא של החלטה מה לעשות כשרואים אין סוף כובעים? אבל אתה צודק שיש משהו מטריד פה. אני התחלתי לחשוב על החידה עלי ידי כך שעשיתי לעצמי רשימה של איזה אינפורמציה מותר לכל איש להסיק מהרשימה. דוגמה למה שחשבתי שמותר: אחוזי הכובעים מכל צבע מותר להעמיד את כל האנשים בשורה ולעשות ממוצע משוקלל כלשהו ( נניח הראשון במשקל 1 השני במשקל 0.5 השלישי 0.25 וכולי) מותר *לבחור* קבוצה סופית כלשהו ולהתבונן בה מותר *לבחור* קבוצה אינסופית ולהסתכל על ממוצעים משוקללים אני מודה שלא חשבתי על האפשרות להשוות את הרשימה לטבלה של אין סוף רשימות שנקבעו מראש, אבל אני לא חושב שזה משהו יותר בעיתי. חידות הן לא תמיד "סגורות עד הסוף" מבחינת התנאים שלהם. |
|
||||
|
||||
האמת, חשבתי שגם אחוז כובעים מכל צבע אי אפשר לחשב... (מצד שני, אח שלי אומר שהתשובה של גדי היא נכונה, ואם אח שלי אומר...) |
|
||||
|
||||
אם הוא גדול *כרצונך*? אינך *רוצה* זכרון אינסופי? |
|
||||
|
||||
מה הבעיה להודיע לכולם בזמן סופי. הראשון ישב כאן, בתחילת הספסל. השני ישב באמצע. השלישי, באמצע החלק שנשאר... |
|
||||
|
||||
בוודאי. לכובע הראשון עובי של מילימטר אחד, לשני חצי מילימטר... (פיזיקאים קוראים לזה ''כובע מתמטי''). |
|
||||
|
||||
השאלה השנייה מטרידה גם אותי, ובלי לענות עליה אין לי פתרון *אלגוריתמי* לחידה (אבל אני מודה שאני לא חושב שיש). גם בשביל לבחור נציג מלכתחילה לכל מחלקה צריך את אקסיומת הבחירה. |
|
||||
|
||||
אין פתרון אלגוריתמי. יתר על כן, אין פתרון מדיד. הוכחה: אם הפונקציה שקובעת עבור כל איש האם להגיד שחור או לבן היא מדידה אז הסיכוי (בהנחה שהגרלנו את הצבעים באופן אחיד ובלתי תלוי) של כל איש לצדוק בניחוש הוא חצי. בהנתן אינסוף מאורעות בסיכוי חצי, הסיכוי שיקרו אינסוף מהם הוא לפחות חצי (מה שידוע בתור הלמה של פאטו, ההוכחה לא קשה). |
|
||||
|
||||
מה זה מדיד? |
|
||||
|
||||
לצורכינו כאן: כזה שעבורו ההסתברות מוגדרת. |
חזרה לעמוד הראשי |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |