|
||||
|
||||
כן, עד זמן מסויים. אחר כך מדברים על ''כאוס'' כתכונה שקשורה להתפלגות האנרגיות העצמיות של המערכת. מסתבר שלמערכות שבאופן קלאסי הם כאוטיות יש סטטיסטיקה מיוחדת של אנרגיות עצמיות. |
|
||||
|
||||
"סטטיסטיקה מיוחדת של אנרגיות עצמיות"? |
|
||||
|
||||
כן. מסתכלים על המרווחים בין אנרגיות עצמיות סמוכות. יש להן התפלגות מוגדרת היטב. |
|
||||
|
||||
אתה מתכוון להתפלגות במובן של פונקציית גל ופירוש קופנהגן, או במובן של התפלגות של אנסמבל קאנוני? ומה מיוחד בסטטיסטיקה שלהם? |
|
||||
|
||||
ממש לא. קח המילטוניאן, חשב את רמות האנרגיה שלו E1 E2 E3.... מדובר ברשימה של מספרים. תסתכל על ההפרש בין כל שני מספרים שכנים, ותעשה סטטיסטיקה על זה. בדרך כלל1 למערכות אינטגרביליות יש התפלגות הפרשים שונה (היא דועכת אקספוננציאלית אאל"ט) מאילו של מערכות לא אינטגרביליות. 1 אני כותב "בדרך כלל" כי למרבית ההפתעה למערכת האינטגרבילית הידועה ביותר, הלא הוא המתנד ההרמוני, כל ההפרשים קבועים. |
|
||||
|
||||
לא הבנתי. נגי שיש לי אוסף של מספרים, כל מספר הוא ההפרש בין שתי רמות אנרגיה צמודות, מה זה אומר "תעשה סטטיסטיקה על זה"? |
|
||||
|
||||
סטטיסטיקה - ממוצע, סטית תקן, מומנטים גבוהים יותר, אחוזונים. מה לא ברור כאן? |
|
||||
|
||||
שלכל הפרש אנרגיות יש את אותו משקל? למה זה מעניין? |
|
||||
|
||||
כן. זה מעניין מכל מיני סיבות. למשל, מתברר שההתפלגות של ההפרשים של מיקום האפסים הלא טריוואלים של פונקצית הזיטא של רימן(תחת נירמול נכון) דומה להתפלגויות האילו. מתברר שלערכים עצמים של מטריצות אקראיות יש התפלגויות כאילו. ההתפלגות הזאת נותנת אינפורמציה על ההמילטוניאן. |
|
||||
|
||||
לא הבנתי. ההתפלגות הזאת אומרת משהו על מערכת פיזיקלית כלשהיא? |
|
||||
|
||||
מה זאת אומרת "אומרת משהו"? האם רמות האנרגיה אומרות "משהו"? אם כך, גם ההתפלגות שלהן אומרת משהו, לא? |
|
||||
|
||||
רמות אנרגיה אומרות משהו על מצבי האנרגיה האפשריים של המערכת. מיצוע שלהם *עם משקל* יכול להגיד משהו על האנרגיה של הרבה מערכות כאלה. מיצוע של ההפרשים של רמות צמודות במשקל שווה? לא יודע, מה? |
|
||||
|
||||
מרווח האנרגיה הטיפוס(=ההופכי של צפיפות המצבים) הוא מאוד חשוב כשמתעניינים בצימוד של מערכת אחת עם אחרת , ראה כלל הזהב של פרמי. אבל למעשה כאן מנרמלים החוצה את הממוצע ומסתכלים על התפלגות מנורמלת. ההתפלגות הזאת היא חתימה סטטיסטית של המערכת ומלמדת דברים רבים על המבנה של ההמילטוניאן גם כשאין מידע ישיר. צריך להבין שסתם רשימה של רמות האנרגיה לא עוזרת הרבה, צריך לחלץ מאפיינים. התגלית שההתפלגות האמורה היא אוניברסאלית מספקת כלי למיון מערכות קוונטיות. למשל, אאל"ט אפשר להסיק על הסימטריה תחת היפוך בזמן של המערכת. |
|
||||
|
||||
סר מייקל ברי מסביר אמנם הוא אומר ש Therefore there is no chaos in quantum mechanics, only אבל כדאי לקרוא את כל המאמר כדי להבין בדיוק למה הכוונה.
regularity |
|
||||
|
||||
זה הזמן (אחד מהם, לפחות) להסביר למאותגרים מהו עצמיון חורצני. |
|
||||
|
||||
אוטומט דטרמיניסטי. |
|
||||
|
||||
בטח נראה לך שהמצאתי את זה, אה? תגובה 90047 תגובה 278113 אבל אולי עדיף היה עצמיון תאי. |
|
||||
|
||||
אמור נא, זה נראה לך הסבר למאותגרים? מנין לי לדעת מה זה אוטומט דטרמיניסטי??? |
|
||||
|
||||
http://he.wikipedia.org/wiki/%D7%90%D7%95%D7%98%D7%9... (בקיצור, אוטומת הוא "מכונת מצבים" מחשב תיאורטי שנמצא במצב מסויים קורא קלט, ועובר למצב אחר וכך הלאה. אוטומט דטרמיניסטי הוא אוטומט שממצב נתון ועבור קלט נתון יעבור תמיד לאותו מצב) |
|
||||
|
||||
שים לב שקישרת לאוטומט *סופי* דטרמיניסטי. זה סוג מסויים של אוטומט (שמאופיין בכך שהזכרון שבו הוא יכול להשתמש הוא סופי), מתוך ארבעת הסוגים העיקריים (שהידוע והחזק שבהם הוא מכונת טיורינג). |
חזרה לעמוד הראשי |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |