|
||||
|
||||
נתחיל ב-LE. נגדיר רצף של פונקציות קונפורמיות המוגדרות ב(חלק מ-) חצי המישור העליון (לא כולל הישר הממשי) ושהן על חצי המישור העליון ומקיימות את המשוואה: g'_t(z)=2/g_t(z) כאשר הנגזרת היא לפי t, ותנאי ההתחלה הוא g_0(z)=z.אם נהרהר קצת נגיע למסקנה כי עבור t מסוים g_t מוגדרת על חצי המישור העליון פחות קטע מעל הראשית. עבור נקודה z בקטע הזה המסלול שלה g_t(z) מגיע לראשית בזמן סופי, שאז המשוואה לא מוגדרת ובכלל דרשנו ש-g_t תהיה על חצי המישור העליון, לא כולל הישר הממשי. עבור הקורא הנבוך הנה גם הפתרון המפורש: g_t(z)= sqrt(z^2+4t) והקטע בו הפונקציה g_t לא מוגדרת הוא [0,2sqrt(t)i].כה רחוק כה טוב? |
|
||||
|
||||
כמעט. אני מבין שה*משוואה* לא מוגדרת (אם כי, כשאני מסתכל על המשוואה עבור הריבוע של g_t הכל נראה בסדר), אני לא מבין למה הפונקציה עצמה לא מוגדרת. צריך אמנם להגדיר branch cut עבור השורש, וטבעי להגדיר אותו על הקטע הנתון, אבל האם זה כורח המציאות? |
|
||||
|
||||
לא זה לא כורח המציאות, אבל המטרה שלי היא ש-g_t תהיה פונקציה קונפורמית מאיזשהו תחום על חצי המישור העליון. במקרה הזה אם המסלול של g_t(z) מוביל אותה לישר הממשי אז z היא מחוץ לתחום ההגדרה. עוד אח"כ. |
|
||||
|
||||
נמשיך. עכשיו נניח שהמשוואה היתה g'_t(z)=2/(g_t(z)-a) כאשר a מספר ממשי. אז הכל אותו דבר עם a במקום הראשית.עכשיו במקום a שים a_t פונקציה ממשית ורציפה של הזמן. אם הפונקציה הזו מספיק יפה אז הפונקציות g_t מוגדרות בתחום שהוא חצי המישור העליון פחות איזושהי עקומה, c. אם a_t=0 תמיד אז העקומה הזו היא הישר המדומה. גם ההיפך נכון: לכל עקומה (אולי צריך עוד תנאים) אפשר למצוא פונקציה a_t שתיתן אותה. הפונקציה הזו נקראית driving function. כל זה נקרא Loewner evolution. לבנר פיתח את זה בשביל להוכיח חלקית את השערת ביברבאך. הסטוכסטיות תבוא מחר. |
|
||||
|
||||
טוב, עוד תגובה אחת, רק למען השלמות. כפי שכתבתי, אם הפונקציה a_t יפה מספיק מקבלים עקומה רציפה c ורצף של פונקציות קונפורמיות g_t מחצי המישור פחות העקומה עד זמן t על חצי המישור. עכשיו ניקח את a_t להיות תנועה בראונית (חד מימדית) עם מהירות k. תנועה בראונית היא לא פונקציה כל כך יפה אבל מסתבר שהיא בדיוק מספיק יפה בשביל לקבל עקומות כנ"ל. ההתפלגות המתקבלת על עקומות היא SLEk. באופן מפתיע ביותר, למרות ששינוי מהירות של התנועה הבראונית לא משנה שום תכונה מהותית, הרי של-SLEk יש תכונות שונות מאוד בהתאם ל-k. ככל ש-k יותר גדול כך העקומה המתקבלת יותר "פרועה". אם k<4 מקבלים עקומה פשוטה (לא חותכת את עצמה), בעוד שעבור k>4 העקומה כן חותכת את עצמה (נוגעת בעצמה1, ליתר דיוק). אם k>8 אז העקומה כבר ממלאת שטחים. עבור כל מיני ערכים של k יש ל-SLEk תכונות מיוחדות. בפרט עבור k=6 (ורק עבורו) מקבלים תכונה שנקראית לוקליות. גבול-קנה-מידה של פרקולציה קריטית צריך לקיים את התכונה הזו. עם עוד קצת עבודה אפשר להוכיח שאם גבול-קנה-המידה של פרקולציה קריטית הוא אינווריאנטי קונפורמית2 אז הוא SLE6. בצורה דומה לגק"מ של SARW צריכה להיות תכונת ההגבלה (restriction) שיש רק ל-SLE8/3. נראה לי שמיצינו את קיבולת החידושים של האייל. 1 נשמע כמו פורנו ביזארי במיוחד - "העקומה נוגעת בעצמה" שלא לדבר על "חותכת את עצמה". 2 וזה מוכח רק עבור השריג המשולשי בדרכים שאינן קשורות ל-SLE. |
|
||||
|
||||
אני עוד תקוע בתגובה הקודמת, אבל בינתיים, תזכיר לי מה זה "מהירות" של תנועה בראונית? |
|
||||
|
||||
תנועה בראונית סטנדרטית נעה במהירות 1 - כלומר בזמן t התפלגות המיקום שלה היא נורמלית עם שונות t. תנועה בראונית במהירות k היא שינוי של הזמן פי k, כלומר, בזמן t היא מתפלגת נורמלית עם שונות kt. |
|
||||
|
||||
יעני, קבוע הדיפוזיה? |
|
||||
|
||||
אני מתאר לעצמי שימצא מי שירצה לקרוא לזה ככה. |
|
||||
|
||||
איך שינוי הזמן פי k יכול לשנות משהו? |
|
||||
|
||||
נו, בגלל זה כתבתי שזה מפתיע ביותר. מעבר לזה, אני לא יודע את החומר מספיק טוב בשביל להסביר באופן לא טכני. בכל זאת: יש כאן שני תהליכים שמתפתחים בזמן: המשוואות הדיפרנציאליות והתנועה הבראונית. הפרמטר k קובע את יחסי הכוחות. עבור z קבוע, ההתפתחות של g_t(z) "מושפעת" יותר מהתנועה הבראונית ככל ש-k גדול יותר. מסתבר שעל הסקאלה של k יש מעברי פאזה. |
|
||||
|
||||
אני קצת איטי, כשאתה אומר שהזמן משתנה פי k אתה בעצם משנה את ההגדרה של התנועה הבראונית (שהיא השאיפה של ההילוך השיכור על השריג תגובה 407955)? |
|
||||
|
||||
זה לא שאתה איטי, זה שהזמן משתנה מהר יותר (k>1). |
חזרה לעמוד הראשי |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |