בתשובה לeasy, 21/08/06 10:59
אלכסנדרוביץ' לבני-תמותה 403954
זכרון רחוק:
בזמן שהייתי בתיכון, אחרי שסיימנו את השיעור הראשון במתמטיקה על המספרים המרוכבים, היה לנו שיעור פיזיקה. לפני השיעור שאלנו את המורה שלנו אם בפיזיקה משתמשים במספרים המרוכבים למשהו. המורה חשב לרגע, ואמר לנו: "כן, לחישובים בזרם חילופין ולעוד משהו קטן". כמה שנים אחר כך, כשלמדתי פיזיקה באוניברסיטה, פגשתי אותו שם (באוניברסיטה), ושאלתי אותו לפשר התשובה שלו, והוא ענה לי "אתה מכיר משהו יותר קטן מקוונטים?".
אלכסנדרוביץ' לבני-תמותה 403962
בכל מקרה זה לא נכון. מספרים מרוכבים מופיעים כמעט בכל ענף פיזיקלי, כולל מכניקה, פיזיקה סטטיסטית, מצב מוצק ועוד נושאים שונים. בפרט, הם מופיעים בטרנספורמי פוריה שמשמשים לפתרון של משוואות דיפרנציאליות (שעלולות להופיע בכל מקום) ובמשפט השארית של קושי כדי לחשב אינטגרלי מסלול (שנחוצים כמעט תמיד).

אתה יודע מה הערך של אינטגרל סביב מערב אירופה?
אלכסנדרוביץ' לבני-תמותה 403965
רומן פולנסקי בצרפת, לא?
אלכסנדרוביץ' לבני-תמותה 403975
וגם מארי קירי קבורה שם, אבל זה הורס את כל הבדיחה.
אלכסנדרוביץ' לבני-תמותה 403979
אה, חשבתי שזו חידה (והתכוונתי רק לרמוז שעליתי על משהו).

מתנצל.
אלכסנדרוביץ' לבני-תמותה 403968
כן, אני יודע, נכון שעברו כמה שנים, אבל למדתי את כל זה... יש הבדל בין מקומות שבהם מופיעים המספרים המרוכבים כטכניקת עזר לפתרון בעיות קונקרטיות, לבין מקומות בהם הם אינהרנטית חלק מהפוסטולטים של המערכת (כמו במכניקת הקוונטים).
אלכסנדרוביץ' לבני-תמותה 403977
למעשה גם בזרם חילופין זה רק טכניקת עזר. פשוט הפתרון של משוואה הרמונית מרוסנת הוא פונקציה מרוכבת.
אלכסנדרוביץ' לבני-תמותה 403978
בקוונטים הם חלק מהפוסטולטים? חשבתי שדווקא מדגישים את זה שכל הדברים המדידים הם ממשיים, ולכן נראה היה לי שהמרוכבים נדחפו לשם רק בגלל שהמתמטיקה דורשת את זה.
אלכסנדרוביץ' לבני-תמותה 403982
כן ולא. בלי מספרים מרוכבים אתה לא יכול להוסיף את הפאזה למצב. פאזה היא לא גודל מדיד.
אלכסנדרוביץ' לבני-תמותה 403983
סליחה. כנראה מההודעה הקודמת התקבל הרושם המוטעה שאני מבין משהו בנושא. אין לי מושג מהי ''פאזה'' בהקשר הזה.
אלכסנדרוביץ' לבני-תמותה 403992
אם יש לך מצב קוונטי (ואני לא הולך להגדיר מה זה מצב קוונטי) אז אפשר תמיד להכפיל אותו במקדם מרוכב עם אורך 1 (שזה בעצם ( exp(iθ) שנקרא "פאזה" בלי שיהיה כל הבדל בתוצאת המדידה. לפאזה יש משמעות כאשר בסופרפוזיציה של מצבים כל מצב הוא עם פאזה שונה.
אלכסנדרוביץ' לבני-תמותה 403985
התוצאות התצפיתיות הן תמיד ממשיות, אבל פונקציית גל מרוכבת היא חלק מהפוסטולטים של מכניקת הקוונטים.
אלכסנדרוביץ' לבני-תמותה 403994
מה שהקשה אמר. לי נראה שהשימוש בפונקצית גל מרוכבת הוא לצרכי נוחות ופשטות בלבד (כלומר, ''דרישה'' של המתמטיקה, לא של העולם הפיזי שמנסים למדל).
אלכסנדרוביץ' לבני-תמותה 403996
אני חושב שהמתמטיקה של הפיזיקה נבחרת כך ש:
1. יהיה קל לבצע חישובים (למשל להעדיף מספרים מרוכבים על זוגות סדורים של ממשיים).
2. שכל תוצאה פיזיקלית תהיה ממשית.
אלכסנדרוביץ' לבני-תמותה 404006
גם וקטורים, נגזרות, סטטיסטיקה ואפילו מספרים ממשיים הם ''דרישה'' של המתמטיקה, לא של העולם הפיזי שמנסים למדל.
אלכסנדרוביץ' לבני-תמותה 404049
אני לא בטוח שאני מסכים, אבל בוא נשאר באי הסכמה הדדית.
אלכסנדרוביץ' לבני-תמותה 403988
אני אפילו לא בטוח שהמתמטיקה דורשת את זה.
לדוגמא: את משוואת שרודינגר אתה יכול לרשום כשתי משוואות מצומדות של שתי פונקציות ממשיות (החלק הממשי והחלק המדומה של פונקציית הגל). זה אמנם מסרבל את החיים, אבל משמר את התוכן מהבחינה המתמטית והפיסיקלית. עם מספיק מאמץ, אולי ניתן לבצע פרוק דומה לכל משוואה פיסיקלית.
אלכסנדרוביץ' לבני-תמותה 404002
נכון. במקום להשתמש פונקציית גל מרוכבת אפשר להשתמש בצמד פונקציות (אפשר לקרוא להן "ממשית" ו"מדומה"), כאשר אתה מגדיר ביניהן שתי פעולות סגורות (אפשר לקרוא להן "כפל" ו"חיבור") עם כל מיני תכונות (קומטטיביות, סוציאטיביות וכל אלה), להוסיף עוד פעולה שלהשדה הממשי עליהן ("כפל בסקאלר"), ופעולה נוספת ("צימוד") עם כל מיני תכונות אחרות (למשל, עבור כל צמד, החלק ה"מדומה" ב{צמד "כפול" צימוד {צמד}} יהיה תמיד אפס) . אפשר גם לקרוא להם "מספרים מדומים" ולהעמיד פנים שאין להם קשר למספרים המדומים שנוור מיינד כל כך שונאת.

אגב, את משוואות מקסוול הגדירו בהתחלה בעזרת עשרות נוסחאות עבור כל רכיב בנפרד, ההמצאה של הרישום הווקטורי ושל האופרטורים המרחביים הצליחה לצמצם את הרישום לארבע משוואות, ואח"כ בעזרת מעבר לארבע ממדים, לשתיים.
אלכסנדרוביץ' לבני-תמותה 404018
בתגובה 403968 (אתה כתבת?) עלתה שאלת ההבחנה בין שימוש במרוכבים כטכניקת עזר, לבין היותם צורך חיוני עבור התורות הפיסיקליות.

דוגמא: הסגירות האלגברית של שדה המרוכבים היא תכונה מהותית שאינה קיימת בשדה הממשי. החלפת האות i ב-u, או החלפת המספר המרוכב הבודד בזוג סדור, אינה מהותית. הגדרת הכפל באופן כזה ש-i בריבוע שווה למינוס 1, דוקא כן.

דוגמא אחרת: בתורת היחסות זנחו את השימוש ב-i לטובת מטריקות של 3+1. הנקודה המהותית מבחינת הפיסיקה היא קיום סימטריות הסיבוב בין המימדים המרחביים, שמצריכות מודיפיקציות כשמוסיפים את הזמן כמימד נוסף (וסליחה על חוסר הריגורוזיות).

השאלה, כפי שאני רואה אותה, היא האם ניתן להעלים את המרוכבים מהפיסיקה כמו בדוגמא השניה (כלומר: מבלי "לרמות" ולהשתמש במרוכבים תחת שמות או סימונים אחרים כמו שציינת בתגובתך).
wick rotation 404020
אני לא בטוח שמדובר במשהו "אינהירנטי" אבל תאור של תורות שדות מסתמך על אינטגרלי מסלול, וכמעט בלתי אפשרי לתאר זאת ללא שימוש במכפלה של i בפעולה.
אגב, גם את הממשיים אפשר להעלים מהפיסיקה על ידי שימוש בחתכי דדקינד.
אלכסנדרוביץ' לבני-תמותה 404024
אילו אבות מכניקת הקוונטים לא ידעו על האפשרות של מספרים מרוכבים, הם היו נאלצים להמציא מושג מתמטי חדש. מושג שכולל בתוכו את המכפלה הפנימית, את הצימוד, את הערך המוחלט, את החיבור, את המכפלה בסקאלר ואת הרציפות של המספרים המרוכבים. האם זה היה "ממש" המספרים המרוכבים? אולי לא, אולי זה היה סתם וקטור דו ממדי (שאח"כ היה מתרחב ל-‏4 ו-‏6 ממדים בהתאם לספינור המתאים), שאף אחד לא היה חושב להתייחס אליו כאל "מספר", כמו שאנחנו לא מתייחסים לספינורי דיראק כאל מספרים (למרות שיש להם תכונות אלגבריות).

עניתי לשאלה שלך?
אבל... 404032
אבל ספינורים הם כן מספרים! ‏1. אלו הם (פחות או יותר, ‏1) קווטרניונים עם נורמה קבועה. ו*זו* הסיבה שאפשר להכפיל אותם זה בזה. לחבר אי-אפשר, בגלל העניין הזה עם הנורמה, אבל הדרך הסבירה לעבוד עם היצורים האלה היא להבין אותם בהקשר הכללי יותר.

יש גן-חיות שלם של חבורות (Fucsian groups) שקשורות למשטחי רימן ‏2, והאיברים שלהן הן (בכאילו) מטריצות עם דטרמיננטה 1. בגן החיות הזה, בעלי החיים המבוייתים הם בדיוק אלה שאפשר להבין את האיברים שלהם גם בתור קווטרניונים; מעין ספינורים. יש מגוון של שיטות סטנדרטיות שנעשות זמינות דווקא כאשר מטפלים באלה כמו במספרים.

זו גם הסיבה שה"מושג המתמטי החדש" היה הופך להיות השדה המוכר של המספרים המרוכבים בין כך ובין כך - מתמטיקה לא משחקים עם יד אחת קשורה מאחורי הגב (אלא בהתחלה, כדי לוודא שאפשר).

1 אחרי שמחלקים ב-‏2 במקום הנכון

2 משטח רימן = כל דבר שנראה לנמלים שחיות עליו כמו מישור; למשל, פני כדור הארץ.
הערה 404126
(אתה בטח יודע את זה, אבל למי שלא יודע:) קווטרניונים הם ספינורים, אבל (לא כל ה)ספינורים הם קווטרניונים. הספינורים של דיראק בהם משתמשים פיזיקאים, למשל, הם לא, למרות שגם אלה וגם אלה הם אלגברות קליפורד.
אבל... 404155
Fucsian groups זה Fuchsian groups?
הערה 404118
בספר שהזכרתי בתגובה 291808 יש (גם) נסיון לבנות את המכניקה הקוונטית מעל האלגברה הממשית, ולא המרוכבת. התוצאה היא פיזיקה אחרת לגמרי מזאת המוכרת לנו.
אלכסנדרוביץ' לבני-תמותה 403964
אחלה מורה היה לך.
הסיבה שנשארתי בתיכון עד סוף י''ב 403969

חזרה לעמוד הראשי

מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים