|
||||
|
||||
חידה: כתבתי תוכנית שמגרילה 0 או 1 בהסתברות של 50%. הרצתי אותה 100,000 פעמים, וקיבלתי 47,324 פעמים 0, ו-52,676 פעמים 1. כעת, למה יש יותר סיכוי לצאת בהגרלה ה-100,001, ל-0 או ל-1? התשובה, כך הופתעתי לגלות לא מזמן, היא שיש יותר סיכוי שיצא 0. "כשל המהמר" עובד. נסו ותיווכחו. הסיבה לכך (לניחושי) קשורה למילה "פסאודו" ב-"מחולל מספרים פסאודו רנדומליים". למספרים הרנדומליים שהמחשב שלי מפיק יש נטייה "למשוך לאמצע". אם יש למישהו הסבר אחר, אשמח לשמוע. בכל אופן, הטיעון שלי הוא שבהנחה שהתוכנה שבונה את שאלוני הפסיכומטרי משתמשת באמצעים דומים לסקריפט הפייתון שלי, מילוי כל השאלון בג' נותן *ערובה* לכך שאצליח ב-20% מהשאלות, בעוד שבמילוי אקראי אני עלול לפספס את כל השאלות ולהשאר עם 0%. כמובן שיש גם סיכוי (שווה?) שאצליח ביותר מ-20% תודות למזל עיוור, אבל שונא סיכונים שכמוני יעדיף ללכת על ה-20% הבטוחים. |
|
||||
|
||||
איך זה נותן ערובה ל-20% אם עדיין תתכן סטייה בכמות סופית של שאלות? יכול להיות שתקבל יותר, יכול להיות שתקבל פחות. לעזאזל - יכול להיות שאף תשובה אינה ג' (בלתי סביר, אבל באותה מידה שבלתי סביר שתפספס את כל התשובות הנכונות בהימור רנדומלי). |
|
||||
|
||||
לא הבנתי את הניסוי: כשאתה אומר שיש יותר סיכוי ל0 האם הכוונה שהרצת את הניסוי הבודד (100,000+1 ) הרבה פעמים? אם כן, האם בכל פעם שהרצת את הניסוי הבודד קיבלת 47:53? |
|
||||
|
||||
טוב, זה טיפה יותר מורכב: בתוכנית מסומלצים שני שחקנים, המהמר והמתמטיקאי. בכל סיבוב מטילים מטבע וירטואלית 100,000 פעמים. כעת, המתמטיקאי "יהמר" על 0 (כי מה זה משנה) והמהמר "יהמר" על מה שיצא הכי פחות עד עכשיו. מטילים מטבע פעם נוספת, ומי שצדק מקבל נקודה. מבצעים 1000 סיבובים כאלה ומסכמים את הנקודות, והפלא ופלא - המהמר ניצח. תמיד. שנה את המתמטיקאי כך שיהמר תמיד על 1, או שיהמר בעצמו על מספר אקראי, והוא תמיד מפסיד למהמר. מכאן נובע (טענתי המקורית), שאם אחרי 100,000 הטלות יצא פחות "עץ" מ"פלי" אז יש יותר סיכוי שבהטלה הבאה יצא "עץ", האין זאת? |
|
||||
|
||||
*תמיד*? יש לך מחולל גרוע, או שאתה כל פעם אתה משתמש באותו הseed (זרע? נבט?). |
|
||||
|
||||
טוב, כנראה שלא תמיד. הנצחון הוא בנקודות, לפעמים ביותר ולפעמים בפחות. רגע, חזרתי לנתונים שלי, ומסתבר שטעיתי בתיאור הניסוי המדוייק: בתוכנה מטילים מטבע 800,000 פעמים, כאשר *בכל* הטלה המהמר מתמודד מול המתמטיקאי, ובסוף הסיבוב מנצח מי שצדק יותר פעמים. יוצא שבערך ב-85% מהסיבובים מנצח (בהפרש זעיר) המהמר, כך שאחרי 100 סיבובים זה כבר די מובהק. לכן כתבתי "תמיד". התיאור החדש שלי משנה משהו? |
|
||||
|
||||
כלומר, בכל הטלה, המהמר מתבסס על ההיסטוריה? זה נראה די מוזר, כי בדרך כלל מחוללים טובים נבדקים בדיוק בבחינות כאלו. בכל אופן, ידוע שבסימולציות כבדות יש בעיות מסויימות עם המחוללים הסטנדרטיים. אני לא בטוח שזה קשור לבעיתך, אבל אני מגלה בין ערימות המאמרים הפזורים במשרדי גם את זה: |
|
||||
|
||||
זו תופעה מאד מעניינת. אפשר להסביר אותה בכך שמחוללי הסיביות הפסאודו-אקראיים אינם מגרילים כל סיבית בנפרד, אלא נעים צעד-צעד על-פני מחזור שלם שנקבע מראש, וידוע (מסיבות תאורטיות) שהוא (כמעט) אחיד בטווח הארוך. התוצאה היא שכל סיבית שהמחולל פולט "מבזבזת" סיבית מתוך המאגר שלו, וזה יוצר תלות בין סיביות העבר לסיביות העתיד. אם אני שולף כדורים שחור-לבן באקראי מתוך כד אינסופי, ההתפלגות שלי עשויה להיות אחידה כל הזמן. אבל אם אני שולף מתוך כד שיש בו מליארד כדורים (שבדיוק חציים לבנים), אז אחרי ששלפתי 100000 כדורים שמהם רק 47000 לבנים, יש הטיה מסויימת לכיוון הכדורים הלבנים. תרגיל: לחשב את אורך המחזור של המחוללים (גודל הכד) מתוך ה- 85% שלך. |
|
||||
|
||||
בקשר למילוי הפסיכומטרי, אני רואה את העניין קצת אחרת: מילוי השאלון באופו אקראי "מבטח" אותך מפני גחמות לא אקראיות של מרכיב הבחינה. *לא משנה* איך הוא יבחר לפלג את התשובות, אם תבחר באופן אקראי, תקבל ( עבור מבחן ארוך מספיק) 20%. |
חזרה לעמוד הראשי |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |