|
||||
|
||||
האם אתה יכול לחקור עצים סדורים, במסגרת המתמטיקה הרגילה, כאשר מותר לך להתעלם כמה שמתחשמק לך מכללי היסק (טפו!) ושאפילו מושג הסתירה לא עושה עליך רושם? אם לא, אז למה לך להרוס לשדמי את מסיבת הגן(-אדם)? :-) הספירה לאחור כבר החלה. כל אחד צריך לשאול את עצמו את השאלה הגורלית "היכן אני אהיה כשיחלוף לו עוד מילניום ותפורסם התגובה ה-6000?". |
|
||||
|
||||
סופרפוזיציה בין אלנמטים אינה מאפשרת הגדרת חבורת האוטומורפיזמים של האלמנטים, כי הם אינם מובחנים זה מזה (כל איבר נושא את הזהויות של כל-אחד מאיברי הקבוצה). מצב הסופרפוזיציה אינו קיים בלוגיקת שני המצבים של המתמטיקה הסטנדרטית, כי שניי מצבים שונים *תמיד* מובחנים זה מזה, וכל כללי ההיסק מוגבלים רק ואך ליחס F XOR T או למצב הסתירה הנובע מ- F AND T . המתמטיקה-המונדית מאפשרת את הרחבת הנ"ל למצב הסופרפוזיציה שבין F ל-T הניתן לייצוג כ: (F xor T) and (F xor T) הקורס ל:(F xor T) ניתן לחקור בשיטה זו כל מערכת של מצבים, המתקיימים בין סופרפוזיציה מלאה לקריסה מלאה.אביב ידידנו, חושב לתומו שכללי היסק מוגבלים רק ואך ורק ל- F XOR T או למצב הסתירה הנובע מ- F AND T . |
|
||||
|
||||
תיקון להודעה קודמת: במקום: (F xor T) and (F xor T) צריך להיות:(F xor T) xor (F xor T)
|
|
||||
|
||||
בהמשך לשתיי ההודעות הקודמות: (F xor T) xor (F xor T) נראה שקול ל-(F xor T) מזווית הראיה של הלוגיקה-הבוליאנית, כי לוגיקה זו אינה עוסקת בסופרפוזיציה. את (F xor T) xor (F xor T) יש להבין באופן הבא: קיים מצב xor בין שניי מצבים לא-מובחנים. |
|
||||
|
||||
אני לא מבין בסופרפיזיציה, אבל בלוגיקה הבוליאנית (F xor T) xor (F xor T) ובכללA xor A שקול לסתירה.
|
|
||||
|
||||
ממעט הלוגיקה הבוליאנית שאני מכיר A xor A אינו שקול לסתירה אלא פשוט מחזיר ערך FALSE. בכל מקרה (F xor T) xor (F xor T) אינו שקול ל F xor T. אם F ו T מייצגים FALSE ו TRUE בהתאמה אזי F xor T הוא T, בעוד (F xor T) xor (F xor T) הוא F, לעומת זאת אם אם F ו T מייצגים שני משתנים אקראיים, אזי F xor T יכול להחזיר ערך TRUE או FALSE, בעוד (F xor T) xor (F xor T) מחזיר תמיד ערך FALSE. |
|
||||
|
||||
אבל זו בדיוק ההגדרה של סתירה: פסוק שערכו "שקר", ללא תלות במבנה. |
|
||||
|
||||
סתירה מתקיימת כאשר שניי ערכי-האמת הם סימולטנית דבר והיפוכו. כדי להבין את השימוש שאני עושה ב-XOR אציג זאת באופן הבא: סופרפוזיציה: |___T XOR F סימטריה שבורה:| |___T XOR F | .____F
| | | |___T |
|
||||
|
||||
למה באמת XOR דווקא? מה הוא מבטא? |
|
||||
|
||||
תגובה 326524? תגובה 327143? |
|
||||
|
||||
אני יודע. הדבר המעניין בדיון הזה הוא לא הפסיכולוגיה של שדמי, אלא של המגיבים לו (את עצמי אני עוד יכול להבין, אבל למה עוזי ממשיך?). לזכותי ייאמר שבאמת ויתרתי על המחשבה שתצא מכאן תקשורת אמיתית (אם כי הדיון גרם לי להתחיל לחשוב קצת יותר לעומק על כמה מושגים במתמטיקה שנראו לי מובנים מאליהם, וגם זה לטובה). |
חזרה לעמוד הראשי |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |