בתשובה לאביב י., 28/10/05 16:05
הלוקלי והלא-לוקלי 341834
"להסביר את מניעי? חשבתי שחשוב לך הדיון לגופו של עניין."

כן, ובצורה שיטתית-רציונלית ולא ריגשית.
הלא קל לי והלא-לוקלי 341844
אם ככה אז לא צריך <מוחה דמעה ועוזב את החדר בסערת רגשות>.
הלא קל לי והלא-לוקלי 341879
בקיצור אין בידך שום טיעון שיטתי מדוע אין להכיל את האי-לוקלי (המייוצג ע"י אלמנט המתקיים סימולטנית בתוך ומחוץ לקבוצה _{_}) כחלק מהמחקר המתמטי, ומדוע יש להגביל את המחקר המתמטי רק לאלמנטים לוקליים (מיוצגים ע"י נקודה .{} XOR {.}) .

האייל האלמוני טוען לחוסר הגיון בהכלת _{_} במחקר המתמטי.

אם אתה שותף לדעתו, אנא פרט.

תודה.
הלא קל לי והלא-לוקלי 341885
לי יש טיעון: זה לא מעניין.
או ליתר דיוק: אין לי כרגע סיבה לחשוב שזה מעניין.
או לדיוק מקסימלי: *בהתחשב* בידע שיש לי כרגע על המתמטיקה הנוצרת מהכנסת אלמנטים לא-לוקאליים למתמטיקה, יש לפעולה הזו תוחלת שלילית.

איך?
הלא קל לי והלא-לוקלי 341903
קרא נא את תגובה 341899 והסבר נא מודע לא מעניין לחקור את מרחב-הגישור המתקיים בין הלוקלי ללא-לוקלי?
הלא קל לי והלא-לוקלי 341915
למה זה כן מעניין? איזה משפט מעניין אתה יכול להראות לי בתורה הזאת?
הלא קל לי והלא-לוקלי 341927
אייל צעיר, במתמטיקה המונדית מתקיים מרחב חקירה חדש לחלוטין, המזמין אותך להכנס לתוכו ולנוע בו בכוחות עצמך.

כל מה שאתה צריך הוא להבין כיצד יקום זה מבוסס על סינתיזה בין הפכים השומרים על עצמאיותם ההדדית בעת הגישור ביניהם, ומתוך תובנה זו אתה יכול לקיים מרחב חקירה משלך המבוסס על לוגיקה משלימה, והמכיל משפטים שאתה יצרת במו ידך, ואינך נזקק לאיש זולתך לשם כך.

אתן לך דוגמא להבדל שבין תפיסת מושג הקטע והנקודה במתמטיקה הרגילה ובמתמטיקה המונדית.

במתמטיקה הרגילה מושגית אלה נגזרים זה מזה לדוגמא: נקודה היא חיתוך בין שניי קטעים, וקטע מוגדר על ידי שתיי נקודות.

במתמטיקה המונדית הנקודה והקטע הם עצמאיים-הדדית ולכן הם אינם נגזרים זה מזה.

קח נא את המושגים קטע ונקודה, המקיימים יחס של עצמאיות-הדדית ביניהם, וחקור בכוחות עצמך את מרחב-הגישור שביניהם, כבר מהרמה הלוגית.

אני מספק לך עולם בר-חקירה, אבל את החקירה וממצאיה אתה משיג בכוחות עצמך.

האם מובן?
הלא קל לי והלא-לוקלי 341936
גם חקר מרחבי האוסדורף הוא תחום מחקר המזמין אותי להכנס לתוכו ולנוע בו בכוחות עצמי. אז מה? אני לא הולך לעשות את זה. אין לי זמן ‏1 לעשות הכל בעצמי. לעומת זאת, לשמוע מאחרים ב"אייל" על משפטים מעניינים בתחומי מתמטיקה שונים זה משהו שאני כן אשמח לעשות. על כן, אני אשמח לשמוע ממך על משפטים מעניינים.

אם אני אשמע על מספיק משפטים מספיק מעניינים, ואחליט שהתחום הספציפי הזה מעניין אותי, אני אלמד אותו יותר לעומד ואעסוק בו בעצמי.

(ובפינת ההערה הקבועה: "במתמטיקה המונדית הנקודה והקטע הם עצמאיים-הדדית ולכן הם אינם נגזרים זה מזה." - גם במתמטיקה הרגילה.)

1 והרי ברור שזה המכשול היחיד העומד בפניי :-).
הלא קל לי והלא-לוקלי 341941
הדגם נא את עצמאיותם-ההדדית של הקטע והנקודה במתמטיקה הרגילה, כבר ברמה הלוגית העומדת בבסיס מושג השייכות.

אם אינך מסוגל להדגים את הנ''ל, אז הדגם נא זאת בכל דרך אחרת.
הלא קל לי והלא-לוקלי 341946
אם הייתי יכול להוכיח לך באמצעות מושג השייכות ששני מושגים *שלא ידוע לנו עליהם כלום* ‏1 הם בלתי תלויים, הייתי יכול להוכיח לך ש*כל* שני מושגים הם בלתי תלויים. אם כך, הייתי יכול להוכיח לך ש"מספר" ו"ראשוני" הם מושגים בלתי תלויים. זה כמובן אבסורד.

1 אלא אם כן אתה מקבל את האקסיומות שעוסקות בישרים ונקודות, ואז *ברור* שאלה מושגים בלתי תלויים.
הלא קל לי והלא-לוקלי 341981
"*שלא ידוע לנו עליהם כלום*"

הנקודה היא יסוד הלוקליות, המאפשרת שיוך לקבוצה רק עפ"י התנאי XOR (נקודה יכולה להיות מחוץ .{} XOR בתוך {.} קבוצה בלבד).

הקטע הינו יסוד האי-לוקליות, המסוגל להתקיים סימולטנית בתוך ומחוץ לקבוצה _{_} ובכך הוא משנה מן היסוד את הבנתנו את מושג השייכות ואת הלוגיקה העומדת בבסיסה.

עכשיו הסבר נא מדוע אתה טוען שלא ידוע לנו עליהם כלום לפי הנ"ל.

ואיך לפי הנ"ל ניתן להסיק כי המושגים "מספר" ו-"ראשוני" הם בלתי תלויים זה בזה ( כך בחשבון שבמתמטיקה הרגילה המושגים "מספר","קטע","נקודה" הם מושגים חסרי תכונות ותלויי אקסיומות, בעוד שבמתמטיקה-המונדית "מספר","קטע" ו-"נקודה" נושאים את התכונות המובנות שלהם לכל מערכת אקסיומות שבה הם מתארחים, או במילים אחרות, יש להם מעמד חוצה-גבולות שאינו תלוי במערכת האקסיומות המארחת אותם).

כמו כן הראה נא מערכת אקסיומות שבה המושגים קו ונקודה אינם תלויים זה בזה (מקיימים עצמאיות-הדדית ביניהם כמו שתיי אקסיומות).
הלא קל לי והלא-לוקלי 341904
אין לי טיעון שיטתי (כיצור רגשני במיוחד, אני קצת מתקשה עם טיעונים מסוג זה), אבל אני חושב שאצליח להשתמש בטיעון שיטתך (אם תהיה מעוניין בכך).
הלא קל לי והלא-לוקלי 341906
אשמח עד מאוד לדעת כיצד אתה מבין את שיטתי, ולכן אני מעוניין בכך.

אם אתה שותף לדעתו של האייל הצעיר, האומר בפשטות כי החלת אלמנט לא-לוקלי במתמטיקה, אינה מעניינת כנושא לחקירה, אז אשמח עם תגיב גם לתגובה 341903 .

תודה.
הלא קל לי והלא-לוקלי 341909
הירגע. גבר צריך לדעת לשלוט בעצמו. באמת, איך הדור הצעיר מתדרדר!
הלא קל לי והלא-לוקלי 341924
שליטה עצמית יצאה מזמן מן האופנה. גבר אמיתי צריך לדעת איך לשלוט באחרים!
הלא קל לי והלא-לוקלי 341928
שליטה על אחרים שייכת עכשיו לאופנת נשים. אתה צריך להתעדכן.
הלא קל לי והלא-לוקלי 341955
הלכתי לקרוא שוב את מאמרו של גיל רונן. תודה.

חזרה לעמוד הראשי

מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים