|
||||
|
||||
"נתקלתי בתורת קבוצות שבה אני מקבל כל הנחה וכל היקש." היות ואינך מבין את משמעות אי-קיומה של הקבוצה-הריקה ב-ZF , אינך מבין את ZF. |
|
||||
|
||||
אני בהחלט מבין: האקסיומות של ZF מנוסחות תוך שיוש בקבוע Ø. בלעדיו לא נוכל בכלל לנסח חלק מהאקסיומות של ZF. |
|
||||
|
||||
לא בדיוק. האקסיומות מנוסחות כך כי זה נוח, אבל הקבוע Ø בהחלט אינו נחוץ, ניתן להחליפו בנוסחה המתארת את הקבוצה הריקה בכל מקום בו הוא מופיע. |
|
||||
|
||||
נכון, אבל יש להניח שהיא קיימת, כמדומני. תקן אותי אם אני טועה, אבל הנחת האי-קיום של הקבוצה הריקה, יחד עם הנחת קיום של קבוצה כלשהי (למשל, אקסיומת האינסוף), סותרות את ה-Axiom of Foundation. |
|
||||
|
||||
דווקא את foundation? יש לשים לב שאקסיומת האינסוף כבר מכילה את ההנחה שיש קבוצה ריקה. אם היינו מנסחים אותה בלי הקבוע המסמל את הקבוצה הריקה {}, זה כנראה היה נראה ככה: "קיימת קבוצה N כך שאם X היא קבוצה ללא איברים אז X שייך ל-N וגם אם Y שייך ל-N אז Y איחוד {Y} שייך ל-N." כשמנסחים את זה ככה אני לא רואה את הסתירה המיידית. מצד שני, קיום קבוצה כלשהי + אקסיומת ההפרדה => קיימת קבוצה ריקה. |
חזרה לעמוד הראשי |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |