בתשובה להאייל הצעיר, 29/09/05 23:55
וריאציות על ZF 333878
"זה שקבוצה היא "לא פחות מהקבוצה הריקה" "

משמעותו של משפט זה היא:

אם יש קבוצה, אז זאת לפחות הקבוצה-הריקה.

הוכחת תלות-הקיום של קבוצה מורכבת בקבוצה לא-מורכבת:

אלמנטרי (הגדרה):

ישות יסודית, שאי-קיומה מונע את קיומם של אלמנטים המורכבים ממנה (תרתי משמע).

ועכשיו דוגמאות והסברים:

טענה 1:

אם {} לא קיימת, אז {{}} בהכרח לא קיימת.

הוכחה לטענה 1:

אם {} אינה קיימת ב-{{}} אז {{}} אינו אלא {}, אך {} לא קיימת לכן {{}} אינה יכולה להתקיים ללא {} כאלמנט יסוד שלה.

טענה 2:

אם {{}} לא קיימת , לא נובע בהכרח ש-{} לא קיימת.

הוכחה לטענה 2:

אם אנו מסירים את הסוגריים החיצוניים של {{}}, {} קיימת, ולכן קיום {} אינו תלוי בקיום {{}}.

מסקנה:

{} הינה קבוצה אלמנטרית ואילו {{}} הינה קבוצה מורכבת.
וריאציות על ZF 334252
תגובה 333871.
וריאציות על ZF 334388
כדי להבין את מושג ההיררכיה אנא עיין בתגובה 334032

תודה, ושנה-טובה.

חזרה לעמוד הראשי

מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים