בתשובה להאייל הצעיר, 29/09/05 21:08
וריאציות על ZF 333803
"העובדה שהקיום של {.} תלויה בקיום של {} *היא בדיוק* הטענה המבוקשת שהנחת."

לא ביקשתי דבר, אלא טענתי ישירות ובגלוי כי לא ניתן לדון במושג ללא קיומו האלמנטרי המינימלי של אותו מושג.

לדוגמא:

זירת-משחק קיימת גם ללא משחק (לדוגמא: במה ריקה) אך משחק אינו קיים ללא זירת-משחק (לדוגמא: אי-קיום במה).
וריאציות על ZF 333806
טענת ישירות ובגלוי, אבל לא הצגת שום ראיה לכך שהקבוצה הריקה היא הקיום האלמנטרי של קבוצה. לדעתי, היה ניתן ליצור גם תורת קבוצות בלעדיה.
וריאציות על ZF 333810
עיין נא בתגובה 333809
וריאציות על ZF 333813
כבר עניתי לה.

בכל אופן, אני לא מקבל את זה כמובן מאליו שהקבוצה הריקה היא המצב הבסיסי של קבוצה. אתה יודע מה? לצורך הדיון, אני כופר גם בקיומה של הקבוצה הריקה! ‏1

1 אחרי הכל, היא "קיימת" רק במובן אחד: כשאני מניח שהיא קיימת, נוצרת מתמטיקה מעניינת.
וריאציות על ZF 333820
"בכל אופן, אני לא מקבל את זה כמובן מאליו שהקבוצה הריקה היא המצב הבסיסי של קבוצה. אתה יודע מה? לצורך הדיון, אני כופר גם בקיומה של הקבוצה הריקה! ‏1

1 אחרי הכל, היא "קיימת" רק במובן אחד: כשאני מניח שהיא קיימת, נוצרת מתמטיקה מעניינת."

הקבוצה-הריקה היא האטום של תורת-הקבוצות האקסיומטית, ולכן אם היא לא קיימת, ZF לא קיימת.

שוב, טענתך כי ZF שורדת בצורה כלשהיא ללא הקבוצה-הריקה, שקולה לטענה שגופך קיים ללא אבני-היסוד שלו.

המתמטיקאים אינם עקביים בהתיחסותם לאבני-יסוד, כי מצד אחד הם מסכימים להשתמש במושג התלות בין אקסיומה למשפט הנגזר ממנה, אך ללא שום סיבה רציונלית, הם מתעלמים מהיררכיית-תלות של אלמנטים פשוטים באלמנטים מורכבים, ונותנים מעמד קיום זהה לאלמנט מורכב ולאלמנט מרכיב.

במקרה של ZF, הקבוצה-הריקה היא האלמנט המרכיב (אבן-היסוד) של כל קבוצה מורכבת, וקבוצה מורכבת היא בהכרח קבוצה לא-ריקה, התלויה לחלוטין בקיומה של אבן-היסוד שלה (קרי, הקבוצה-הריקה).
וריאציות על ZF 333824
"הקבוצה-הריקה היא האטום של תורת-הקבוצות האקסיומטית" - לא מדויק. יש עוד אקסיומת קיום של קבוצה, שלא עוסקת כלל בקבוצה הריקה.

"לכן אם היא לא קיימת..." - לא נכון. גם אם נחליף את אקסיומת הקיום של הקבוצה הריקה באקסיומת האי-קיום של הקבוצה הריקה, נקבל ככל הנראה מערכת אקסיומות עקבית, שיש בה קבוצות (אקסיומת הקבוצה האינסופית, זוכר?).

"גופך קיים ללא אבני-היסוד שלו" - המושג "הגוף שלי" יכול להיות קיים בעולם היפותטי ללא אבני היסוד שלו. ממש כך.

"הם מתעלמים מהיררכיית-תלות של אלמנטים פשוטים באלמנטים מורכבים, ונותנים מעמד קיום זהה לאלמנט מורכב ולאלמנט מרכיב" - למה אתה חושב ככה? מתמטיקאים יודעים להבדיל היטב בין אקסיומה למשפט, למשל. יש גם דוגמה יותר מוצלחת: רדוקציה חישובית. זה בדיוק הדבר שאתה קורא לו "היררכיית-תלות" עבור הקיום של אלגוריתמים שמחשבים פונקציות שונות. המושג הזה אינו "תבוני" כלל - הוא ממש פורמלי. בכל אופן, מתמטיקאים אכן חוקרים אותו.
וריאציות על ZF 333866
"לא מדויק. יש עוד אקסיומת קיום של קבוצה, שלא עוסקת כלל בקבוצה הריקה."

אם הקבוצה-הריקה לא קיימת, אקסיומות אלה "טוחנות ריק" - פשוטו כמשמעו.

"(אקסיומת הקבוצה האינסופית, זוכר?)."

כדי לזכור את אקסיומת האינסוף צריך שיהיה לה איזה תוצרת, אך ללא קיום הקבוצה הזו, אין תוצרת, אז אני לא זוכר אותה.

"המושג "הגוף שלי" יכול להיות קיים בעולם היפותטי ללא אבני היסוד שלו. ממש כך."

אם כך הוא ישות אלמנטרית השקולה לקבוצה-הריקה בתורת קבוצות.

"למה אתה חושב ככה?"

כי {{}} קיים ללא תלות ב-{} עפ"י המתמטיקה הסטנדרטית.
וריאציות על ZF 333871
מי אמר ש-{{}} קיימת בכלל?

נ.ב.
"אם הקבוצה-הריקה לא קיימת, אקסיומות אלה 'טוחנות ריק"' - שוב אתה מניח את המבוקש, בלי להציג שום טיעון שיצדיק אותו. יותר מזה: אתה מתעקש להתעלם מאקסיומה שאומרת ש*קיימת* קבוצה אינסופית.

חזרה לעמוד הראשי

מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים