בתשובה להאייל האלמוני, 22/09/05 12:12
מחשבות טרחניות על אקסיומת הקיום של ZF (גרסה מתוקנת 2) 331598
"לא הבנתי את ההסבר שלך. הטענה לגבי הזוגיים היתה מעגלית. טענות מעגלית אינן קבילות לוגית. אין לזה שום קשר לאקסיומות קיום."

היא איננה מעגלית כי מעגליות מתקיימת רק במקרה של הנחת המבוקש בהגדרת-קיום של אלמנט, ולא בשום תכונה משנית שלו, המבוססת על קיומו.

בקיצור, הגדרת המספרים-הזוגיים נסמכת על קיום המספרים-הטבעיים, והיא איננה שקולה להגדרת-הקיום של הקבוצה-הריקה, כי מושג הקבוצה אינו מוגדר, ולכן אקסיומת-הקיום של הקבוצה-הריקה איננה תכונה משנית של קבוצה במקרה דנן, אלא היא לובשת במקביל שניי קובעים והם הגדרת קיום+תכונה.

אין להניח את המבוקש בעת הגדרת-קיום.
מחשבות טרחניות על אקסיומת הקיום של ZF (גרסה מתוקנת 2) 331599
תיקון קטן:

במקום "שניי קובעים" יש לקרוא "שניי כובעים".
מחשבות טרחניות על אקסיומת הקיום של ZF (גרסה מתוקנת 2) 331601
באיזו שפה זה "שניי" ?
מחשבות טרחניות על אקסיומת הקיום של ZF (גרסה מתוקנת 2) 331603
בשפת ה''י''
מחשבות טרחניות על אקסיומת הקיום של ZF (גרסה מתוקנת 2) 331604
תיקון נוסף:

במקום: "אין להניח את המבוקש בעת הגדרת-קיום."

יש לקרוא: " אין להניח את המבוקש במנותק מהגדרת-קיומו."

תיקון זה בא כדי להסיר כל ספק של שימוש במושג הזמן.
מחשבות טרחניות על אקסיומת הקיום של ZF (גרסה מתוקנת 2) 331619
אבל הבעיה שלי לא היתה להוכיח את קיום המספרים הטבעיים אלא את קיום המספרים ה*זוגיים*. מושג המספר הזוגי אינו מוגדר ללא אקסיומת הקיום שלו ולכן אקסיומת הקיום של המספרים הזוגיים אינה תכונה משנית של המספרים הזוגיים.
מחשבות טרחניות על אקסיומת הקיום של ZF (גרסה מתוקנת 2) 331650
"מושג המספר הזוגי אינו מוגדר ללא אקסיומת הקיום שלו"

האקסיומה של המספר-הזוגי אינה אקסיומת-קיום, אלא אקסיומה המגדירה תכונה של אלמנט קיים, ואלמנט זה הוא מספר-טבעי כלשהו.

אין הדבר נכון לגבי הקבוצה הריקה, כפי שהסברתי בתגובה 331598 .

עיין נא גם בתגובה 331627 כדי להבין היטב את עמדתי בנושא.

תודה.
מחשבות טרחניות על אקסיומת הקיום של ZF (גרסה מתוקנת 2) 331655
אני כמעט מבין. אבל נדמה לי שמדובר על אקסיומת הקיום של הקבוצה *הריקה* לא אקסיומת קיום של *קבוצה*. אנו מגדירים *תכונה* של אלמנט קיים.
מחשבות טרחניות על אקסיומת הקיום של ZF (גרסה מתוקנת 2) 331658
"אנו מגדירים *תכונה* של אלמנט קיים."

מושג הקבוצה הוא בפירוש מושג לא מוגדר בתורת הקבוצות, ולכן כל אקסיומה המשתמשת במושג זה גם מקיימת אותו, או במילים אחרות, מושג הקבוצה אינו יכול להתקיים במנותק מהשיטה הפורמלית המגדירה אותו.
מחשבות טרחניות על אקסיומת הקיום של ZF (גרסה מתוקנת 2) 331663
אז מה? הדילמה שהצגת היתה לגבי הקבוצה ה*ריקה*, לא לגבי מושג הקבוצה. הסברת שאקסיומת הקיום של הקבוצה הריקה ("קיימת קבוצה A כך ש...") היא פגומה, משום שאנו לא יכולים להניח שקיימת קבוצה ריקה כאשר אנו מנתחים את האקסיומה ומכאן היסקת ש x איננה הקבוצה הריקה.
(כל זאת בהנחה שאני הבנתי אותך נכון).
מחשבות טרחניות על אקסיומת הקיום של ZF (גרסה מתוקנת 2) 331675
"הדילמה שהצגת היתה לגבי הקבוצה ה*ריקה*, "

לא, הדילמה שהצגתי היא לגבי *הקבוצה הריקה*.
מחשבות טרחניות על אקסיומת הקיום של ZF (גרסה מתוקנת 2) 331683
אם כך, אני הצגתי דילמה לגבי *טבעי זוגי*.
מחשבות טרחניות על אקסיומת הקיום של ZF (גרסה מתוקנת 2) 331694
"אני הצגתי דילמה לגבי *טבעי זוגי*."

אין פה שום דילמה כי *טבעי* מוגדר לחוד ו-*זוגי* מבוסס על קיומו של *טבעי*.

לא כך הם פני הדברים בהגדרת *הקבוצה הריקה*.
מחשבות טרחניות על אקסיומת הקיום של ZF (גרסה מתוקנת 2) 331691
כדי להמנע מהנחת המבוקש באקסיומת-קיום, מתעלמים המתמטיקאים מתוכן אפשרי של x , כאשר הטענה העומדת בבסיס התעלמות זו היא:"היות ולא הגדרנו מה זאת קבוצה הרי שאנו מקבלים מצב של אי-כריעות x כתנאי ריגורוזי להגדרת A."

אם כך, ניתן להבין כי אי-כריעות הינה מצב תקין לחלוטין בניסוח שפה פורמלית, כאשר אי-כריעות זו מאפשרת לנו להכריע.

אם כך הם פני הדברים, אז לשם מה אנו צריכים את כל המשחקים הסכולסטיים המבוססים על אי-הידיעה המלאכותית המבוססת על המשפט המכונן "אני לא-יודע שאני יודע".

שאלה: מדוע אני טוען כי זהו המשפט העומד בבסיס x ?

תשובה: ברור לחלוטין כי מושג הקבוצה אינו מובן אם אין אנו מגשרים בתודעתנו בין המושג "ריק" לבין המושג "לא-ריק".

כייון שכך, אנו יודעים היטב מהם מצבי הקיום המינימליים של x , אך במקום להשתמש בידע זה בגלוי ולהגדיר ישירות את הקבוצה הריקה כ-"קבוצה ללא כל תכולה", אנו יוצרים סוכן מלאכותי פרי תודעתנו אנו ששמו הכמת "לכל", ושולחים אותו לעשות בשבילנו את העבודה, תוך התעלמות מוחלטת מתלותו של כמת זה בקיומנו אנו.

אם אינך מסכים איתי, הוכח נא, לדוגמא, שהכמת "לכל" אינו יציר תודעתנו.

תודה.

חזרה לעמוד הראשי

מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים