בתשובה לגדי אלכסנדרוביץ', 08/09/05 15:28
על מושג האירציונליות 328380
מישהו כבר הקדים אותי: תגובה 327564 מראה איך לעשות את זה עבור 2, ו-תגובה 327579 נותנת את המתכון לכל מספר ראשוני (ולכך התכוונתי ב-"בכוח"): לכל p מכינים רשימת שאריות (1 עד p-1) ומראים שכל העלאה בריבוע של מספר המתחלק ב-p עם כל אחת מהשאריות לא מתחלקת ב-p.
כך נוכל להראות שאם a^2=b^2*p אז גם a וגם b מחלקים את p, ומגיעים לסתירה.
יכול להיות שאני לא מבין משהו עמוק כאן, ואולי עדיף לחכות לצעיר.
על מושג האירציונליות 328385
יפה. מכיוון שההוכחה הזו כללית לכל p, אין שום מניעה להוכיח את המשפט "לכל p שורש p אי רציונלי" בלי להשתמש במשפט היסודי של האריתמטיקה: יהא p כלשהו אז נשתמש בהוכחה הכללית כדי להראות שריבוע מתחלק על ידי p אם ורק אם השורש שלו מתחלק על ידי p ובא לציון גואל. השימוש היחיד שצריך לעשות במשפט היסודי של האריתמטקה הוא כדי שהטענה תהיה נכונה לשורש של כל n שאיננו ריבוע, גם אם n לא ראשוני.
על מושג האירציונליות 328390
אני אולי לא מבין מספיק מתמטיקה, אבל איך אתה מוכיח עבור שארית a כללית ש-a^2 לא מתחלק ב-p בלי המשפט היסודי?
(מעניין אותנו a^2 כי את הריבוע אפשר לפתוח לשני גורמים שבוודאות מתחלקים ב-p ועוד a^2).
על מושג האירציונליות 328395
עוזי הראה בתגובה 327627.
על מושג האירציונליות 328398
אכן לא הבנתי את התגובה ההיא ואיך ההוכחה שם הולכת. כנראה שאני מפספס משהו מאוד בסיסי פה, אז אני אפסיק להטריד.
על מושג האירציונליות 328401
אתה לא מטריד. עוזי מתבסס על מה שמכונה "האלגוריתם האוקלידי". בעזרת האלגוריתם ניתן להראות שאם x זר ל-n אז קיימים מספרים שלמים a,b כך ש-an+bx=1. האלגוריתם הזה מתקיים באוסף מיוחד של חוגים שנקראים "חוגים אוקלידיים" ושיש בהם מושג כלשהו של חילוק עם שארית (אם תרצה אני ארחיב) - המספרים השלמים הם חוג כזה, ולא צריך את המשפט היסודי של האריתמטיקה בשביל להראות את זה. גם ההפך נכון אם an+bx=1 עם a,b שלמים אז x,n זרים (כי המחלק המשותף המקסימלי של x,n מחלק כל אחד משני האיברים בסכום אז הוא מחלק גם את מה שבצד ימין, ולכן הוא חייב להיות 1).

עכשיו עוזי לוקח את המספרים שלנו וכותב ax+bn=1 ו- cy+dn=1. הוא כופל ומקבל את הדבר הבא:

(ac)xy+(da+cb+db)n=1

תכפול ותעשה כינוס איברים אם אתה לא מאמין לי. אבל מה קיבלנו? מה שבסוגריים הם מספרים שלמים, ולכן אפשר להפעיל את הכיוון ההפוך ולקבל ש-xy זר ל-n.
על מושג האירציונליות 328404
כינוס האברים לא יצא לי ממש מה שכיוונת (בתוך הסוגריים לפני n יצא לי dax+bcy+dbn, זה לא משנה כי זה בכל מקרה שלם), אבל הבנתי את ההוכחה. עוזי לא רשם שהמספרים a עד d שלמים ולא הכרתי את "האלגוריתם האוקלידי".
תודה רבה.
על מושג האירציונליות 328432
בכינוס האיברים כמובן שזו טעות שלי ואתה צודק (גם בתשובה וגם בכך שזה ממילא מספר שלם). אם אתה לא מכיר את האלגוריתם האוקלידי זה קצת יותר בעייתי, כי קשה להסביר על רגל אחת. אני אנסה כאן ואפשר גם לקשר אותך לויקיפדיה:
הרעיון הבסיסי הוא זה: אם יש לך יכולת לחלק דברים עם שארית (כלומר, אם יש לך איברים x,y אז קיימים איברים q,r כך ש-x=qy+r כאשר r קטן מ-y במובן מסויים שלא ניכנס אליו כאן אבל כשמדובר במספרים שלמים הוא פשוט הערך המוחלט שלהם) אז יש אלגוריתם למציאת מחלק משותף מקסימלי של שני איברים.

מחלק משותף מקסימלי d של x,y הוא פשוט מספר שמחלק את x,y וכל מספר שמחלק גם את x וגם את y מחלק בהכרח גם את d. כבר אתה רואה ש-d לא יחיד - מחלק משותף מקסימלי של 6,15 הוא גם 3 וגם מינוס 3. מתברר שזה ההבדל היחיד שיכול להיות בין מחלקים מקסימליים במספרים שלמים - הסימן.

איך עובד האלגוריתם האוקלידי? נניח שהמספרים שלנו הם x>y ולצורך פשטות הם טבעיים. תחלק את x ב-y ותקבל, כאמור, x=qy+r. עכשיו שים לב למשהו מעניין: מחלק משותף מקסימלי של y ו-r הוא גם מחלק משותף מקסימלי של x,y (שאנחנו מסמנים d). למה? ברור ש-d מחלק את r כי הוא מחלק את x,y והרי r=x-qy (אז d מחלק כל גורם באגף ימין ולכן מחלק את אגף שמאל). בנוסף, אם e הוא איבר שמחלק את r,y (סליחה על עודף האותיות) אז הוא מחלק גם את x, כי הרי x=qy+r. לכן e מחלק את d, כי הרי אמרנו שכל מי שמחלק את x ואת y מחלק את d.

מה יצא לנו מכל זה? שעכשיו כדי למצוא את מחלק משותף מקסימלי של x,y מספיק למצוא מחלק משותף מקסימלי של y,r, והרי y>r ולכן הממדים של הבעיה שלנו מצטמצמים, ואנחנו יכולים להמשיך באותה השיטה בדיוק עד שנקבל בשלב מסויים שני מספרים a>b שאנחנו מחפשים להם מחלק משותף מקסימלי ומתקיים ש-b מחלק את a ללא שארית, ואז b הוא מן הסתם המחלק המשותף המקסימלי.

כל זה ארוך ומסובך אבל לא השתמשנו בכלל במשפט היסודי של האריתמטיקה.

עכשיו נשאר הטוויסט האחרון, שאני לא אוכיח לך כאן: אם d הוא מחלק משותף מקסימלי של x,y אז קיימים מספרים שלמים a,b כך ש-ax+by=d - ואפשר למצוא אותם באמצעות הרחבה קלה של האלגוריתם האוקלידי.

אם כל זה ברור לך ועדיין ההוכחה של עוזי לא ברורה לך תגיד ואני אמשיך (כבר כמעט גמרנו).
על מושג האירציונליות 328454
יפה מאוד ותודה רבה. אין צורך להמשיך.
אלגוריתם אוקלידס - נוסח מקוצר 328460
לא חיוני לשיחה, אבל הגרסה שלהלן כל כך חמודה:
כדי למצוא את הממג"ב של a ו־b, חסר מן הגדול את הקטן. המשך עד שתקבל אפס באחד מהם. השני הוא הפתרון.
אלגוריתם אוקלידס - נוסח מקוצר 328472
מה שמעניין הוא אם האלגוריתם הזה יעיל באותה מידה כמו האלגוריתם המקורי. למישהו יש דוגמה שעליה האלגוריתם הזה "ייתקע" להרבה זמן?
אלגוריתם אוקלידס - נוסח מקוצר 328482
אם אתה מחפש את הממג"ב של 1,000,000 ו-‏7, האלגוריתם המחסר יבלה זמן רב בניסיון להיפטר מה-‏7.

זו חידה נחמדה למצוא את צמדי המספרים הכי גרועים לאלגוריתם האוקלידי (רמז: בצמדים האלה, האלגוריתם המחלק מתנהג דומה מאוד לאלגוריתם המחסר). (עוד רמז: שפנים).
אלגוריתם אוקלידס - נוסח מקוצר 328494
פיבונאצ'י?
אלגוריתם אוקלידס - נוסח מקוצר 328495
כן. (למה?)
אלגוריתם אוקלידס - נוסח מקוצר 328502
נניח ש-x,y הם שני מספרי פיבונאצ'י רצופים, אז x=y+z כש-z הוא זה שלפני שניהם, ו-y>z כי y עצמו הוא סכום של שני מספרים טבעיים שאחד מהם הוא z. לכן x=y+z זו גם החלוקה עם שארית של x ב-y.

נחמד.
אלגוריתם אוקלידס - נוסח מקוצר 328527
בינתיים רק הסברת למה בהפעלת אוקלידס על פיבונצ'י, המנה בכל סיבוב היא תמיד 1 (והשארית היא מספר פיבונצ'י קודם). אינטואיטיבית זה נראה "הכי גרוע", אבל זה תרגיל מעניין וחינוכי לנסח בדיוק את הטענה שזה באמת "הכי גרוע", ואז להוכיח אותה בזהירות.
אלגוריתם אוקלידס - נוסח מקוצר 328483
מה זה כבר מקדם פולינומי ביני ובינך...
אלגוריתם אוקלידס - נוסח מקוצר 328474
ממג"ב?
אלגוריתם אוקלידס - נוסח מקוצר 328477
מחלק משותף גדול ביותר.
אלגוריתם אוקלידס - נוסח מקוצר 328481
תודה.
על מושג האירציונליות 328411
עיקר שכחתי - אשמח אם תרחיב על האלגוריתם האוקלידי.
על מושג האירציונליות 464354
מי שיודע מה זה כופל משותף מקסימלי?

חזרה לעמוד הראשי

מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים