|
||||
|
||||
בלה, בלה, בלה. ואני רק שאלתי שאלה פשוטה: אוסף סופי יכול להשיג את עוצמת הקבוצה המלאה? התשובה לזה יכולה להיות "כן", והיא יכולה להיות "לא", או שאולי בלוגיקה האורגנית הלא-דדוקטיבית שלך זה אחרת? אם "כן", הייתי מבקש שתאמר לי איזה אוסף סופי עושה זאת. אם "לא", אז אני מחזיר את כבודו בנימוס לתגובה 328270, לתת לך צ'אנס לתקן את התיקון שכבר תיקנת. |
|
||||
|
||||
"אוסף סופי יכול להשיג את עוצמת הקבוצה המלאה?" לא, והסיבה פשוטה בתכלית, כי תוכן הקבוצה-המלאה הוא רציפות מוחלטת אינסופית, ולכן מעצם הגדרה פשוטה זו אנו למדים, שהיות ואוסף סופי איננו אינסופי, הריי שאין לנו שום יכולת להשוות בינו לבין תוכן הקבוצה-המלאה. המצב שונה במקרה של אוסף אינסופי כי האינסוף משמש כאן כמושג משותף הניתן להשוואה, כאשר מדד ההשוואה הוא עוצמת-הרצף. כאשר מתבצעת ההשוואה, ברור לנו מיידית כי לאוסף אינסופי אין את עוצמת-הרצף של תוכן הקבוצה-המלאה. אחזור שנית: א) מבחינה מבנית ברור לגמריי ששום אוסף (סופי או אינסופי) אינו יכול להשיג את עוצמת-הרצף של תוכן הקבוצה-המלאה. ב) ברור לגמרי שאוסף סופי אינו ניתן להשוואה מבחינה כמותית לתוכן הקבוצה-המלאה כי אוסף סופי הוא סופי מעצם הגדרתו, ותוכן הקבוצה-המלאה הוא אינסופי מעצם הגדרתו. ג) ההשוואה בין אוסף אינסופי לתוכן הקבוצה-המלאה מתבססת על תכונת האינסופיות המשותפת לשניהם, אך אז ברור לחלוטין שמבחינה מבנית עוצמת-הרצף קיימת רק ואך ורק בתוכן הקבוצה-המלאה, ומייד אנו מבינים שהקרדינל המדוייק של כל אוסף אינסופי נתון, פשוט אינו קיים. יש מבין? |
|
||||
|
||||
"תוכן הקבוצה-המלאה הוא רציפות מוחלטת אינסופית". טוב ויפה. אבל מדוע להסיק מזה ש*עוצמתה* היא עוצמת הרצף? רק מפני שכך קוראים לזה במתמטיקה? מדוע לא להסיק שעוצמת הקבוצה המלאה היא, פשוט, ברמה העולה על כל אינסוף אחר? (ואגב, בוויקיפדיה אין כל תזכורת לכך שקנטור "ויתר" על הקבוצה המלאה משיקולים דתיים. הוא רק אמר שהקבוצה המלאה היא אלוהים. לא נאמר שם כלום על ויתור). |
|
||||
|
||||
אם כך, התיקון שלך את עצמך מקודם היה מיותר, ורק בעייה קטנה אחת נותרה: מקודם טענת "שום אוסף לא יכול להשיג את עוצמת הקבוצה המלאה, ולכן שום אוסף אינו שלם, ולכן לשום אוסף אין קרדינל מובחן". יש פה שרשרת של מסקנות ("א ולכן ב ולכן ג"), ועכשיו ראינו שאפשר להפעיל אותן בדיוק גם על אוספים סופיים (שכן גם הם לא יכולים וכו'). עכשיו אתה מביא נימוק אחר למה לאוסף סופי יש כן קרדינל מדוייק. יופי טופי, אבל זה עדיין סותר את מה שאמרת שם: לא יכול להשיג את עוצמת הרצף ---->> אין קרדינל מדוייק. האמת, סתם בא לי לראות אם אפשר להראות לך באופן חד-משמעי סתירה בתורה שלך, אבל זה די ברור שאתה קרנק מוכשר מדי בשביל ליפול בזוטות כאלה. אז שיהיה לך רק טוב ובהצלחה בלשכנע את כל מתמטיקאי העולם שהם עוורים. |
|
||||
|
||||
"אם כך, התיקון שלך את עצמך מקודם היה מיותר," טעות בידך, בזכות הדקדקנות שלך, הראתי בצורה חד-משמעית כיצד אלמטים מתמטיים יסודיים כמו רצף ואוסף, נבחנים גם בזכות תכונותיהם הכמותיות וגם בזכות תכונותיהם המיבניות. "עכשיו אתה מביא נימוק אחר למה לאוסף סופי יש כן קרדינל מדוייק. יופי טופי, אבל זה עדיין סותר את מה שאמרת שם: לא יכול להשיג את עוצמת הרצף ---->> אין קרדינל מדוייק." לא, הרחבתי את ההסבר המראה בבירור כי יש להבין את הנאמר הן מהבחינה המבנית והן מהבחינה הכמותית. "האמת, סתם בא לי לראות אם אפשר להראות לך באופן חד-משמעי סתירה בתורה שלך, אבל זה די ברור שאתה קרנק מוכשר מדי בשביל ליפול בזוטות כאלה. אז שיהיה לך רק טוב ובהצלחה בלשכנע את כל מתמטיקאי העולם שהם עוורים." אם כך אתה מודה שלו באת לקיים איתי דיון אמיתי, אלא באת ל"עשות ניסוי בקרנק". הניסוי לא הצליח לך, אבל אני נשארתי קרנק בשבילך. לצערי אתה דוגמא חיה ליכולת ניהול הדיאלוגים של רבים מבני קהילתך (המתמטיקאים ה"טהורים") שהזדמן לי לנהל איתם דו-שיח ב-4השנים האחרונות דרך ה-Internet . אינך מתאר לך עד כמה אני מיצר על כך. |
חזרה לעמוד הראשי |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |