![]() |
|
![]() |
||
|
||||
![]() |
אבל אם הוספת קבועים חדשים, זו כבר לא אותה שפה. למה אתה ממשיך לקרוא ליצור החדש PA? | ![]() |
![]() |
![]() |
![]() |
|
![]() |
||
|
||||
![]() |
הרעיון הוא שיש מודל לתורה החדשה (עם הקבוע הנוסף) ובפרט שהו מודל גם לתורה הישנה (PA) עם תכונה נוספת ו-"לא טבעית": יש מספר שגדול מ-0,1,2, וכו'. כמובן שאת התכונה הזו לא ניתן להביע באמצעות פסוק בשפה. | ![]() |
![]() |
![]() |
![]() |
|
![]() |
||
|
||||
![]() |
(אם התשובה של אורי לא ברורה) אני לא קורא ליצור החדש PA. ה*מודל* של המערכת החדשה הוא קבוצה המכילה את 0, 1, 2, ... וגם את החדש הזה "ת" (ועוד הרבה מספרים אחרים, מסיבות שאני יכול להסביר), והמודל הזה הוא *גם* מודל של PA. זה מה שרצינו להוכיח: יש ל-PA מודלים לא סטנדרטיים. | ![]() |
![]() |
![]() |
![]() |
|
![]() |
||
|
||||
![]() |
ובמודל הסטנדרטי של PA אין אינסוף? | ![]() |
![]() |
![]() |
![]() |
|
![]() |
||
|
||||
![]() |
במודל הסטנדרטי של PA יש אינסוף מספרים, אבל אין מספר "אינסוף" - יש רק המספרים המוכרים: 0, 1, 2, 3, 4, וכו'. | ![]() |
![]() |
![]() |
חזרה לעמוד הראשי | ![]() |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
![]() |
© כל הזכויות שמורות |