|
||||
|
||||
כמו שאמרתי, הטור מזייף כאשר מסכמים אותו בצורה "נאיבית". מסתבר שלמרות שהטור אינו "מתכנס" אלא רק אסימפטוטית *אפשר* להפיק מאברי הטור את התוצאה הנכונה. קוראים לזה סכימה בורלית borel summation וגיגול קצר יגלה שאת הדוגמא האפס מימדית של האוסצילטור ה אנהרמוני יודעים לסכם ללא התבדרויות. לצערי לא הצלחתי למצוא לינק למאמרים הקלאסיים של אפיטוב ושל בנדר ו-וו, אבל הנושא הזה ממש נטחן לעייפה בכל ספר לימוד מודרני. |
|
||||
|
||||
לא ידעתי. תודה האם יפתיע אותך לדעת שגיגול קצר (או ארוך) לא ממש תרם לי? :) |
|
||||
|
||||
לא התכוונתי שהגיגול ילמד אותך *איך* עושים את זה, אבל הוא יתן לך מושג איפה להתחיל אם זה באמת מעניין אותך. אל תרגיש רע אם זה *לא* מעניין אותך. |
|
||||
|
||||
זה כן מעניין אותי (הפיתוח של האינטגרל האפס ממדי) ולא, הוא לא נתן לי מושג איפה להתחיל, לצערי. |
|
||||
|
||||
המאמר(ים) של בנדר ווו, http://prola.aps.org/abstract/PR/v184/i5/p1231_1 ו http://prola.aps.org/abstract/PRD/v7/i6/p1620_1 (כנראה צריך להיות ברשת אוניברסיטאית בשביל לקרוא אותם). |
|
||||
|
||||
תודה. רשת אוניברסיטאית זה בדיוק מה שחסר לי :-( בכל אופן, מכיוון ששאלו, הרעיון הבסיסי הוא כזה: מראים (במאמץ רב, כמו במאמרים הנ"ל) שהטור ההפרעתי מתבדר כמו חזקה כלשהי של העצרת, ואז נזכרים שטורים כאלו אפשר לרשום בדרך טריקית שכן מתכנסת. לדרך הזאת קוראים סכום בורל.אם יש רק מספר סופי של איברים בטור, עושים עוד קירוב, ואז התהליך נקרא סכום פאדה-בורל. למרות האופטימיות שלי, באמת קשה למצוא הסבר טוב ברשת החופשית, אבל אם חופרים קצת בתוך מאמרים יותר טכניים, לפעמים אפשר למצוא משהו. למשל נוסחאות 8 ו 9 פה: |
חזרה לעמוד הראשי |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |