בתשובה להאייל האלמוני, 19/06/05 1:08
בשם הבורים 309960
נראה לי שהבעיה היא שאת שבויה בתפיסה שהיצוג של מספר כשבר עשרוני הוא "האמיתי".
גודלו של שורש שתיים - הביטי על מרצפת רגילה בדירה שלך. בהנחה שהיא ריבוע, שורש שתיים הוא היחס בין האלכסון לבין צלע המרצפת. זהו גודל כל כך אינטואיטיבי (אלכסון של משולש ישר זווית ושווה צלעות) עד כדי כך שנראה לי שכל יצוג עשרוני, אפילו של מספר רציונלי מאוד, לוקה בחסר מולו. מה היתרון של 10.4 על פני יצוג כזה של גודל?
בשם הבורים 309962
יש יתרון כלשהו למספר רציונלי על פני אי רציונלי: אם אתה רוצה לעבור ממספר רציונלי למספר שלם, אתה פשוט מכפיל את קנה המידה שלך. ומספרים שלמים קל יותר לתפוס, אינטואיטיבית.

אני לומד עכשיו אלגוריתמים בסיסיים על רשתות זרימה, והסכימה הבסיסית עובדת רק בהנחה שכל קשת מעבירה מספר שלם של יחידות. אם היא מעבירה מספר רציונלי, זו לא בעיה, כי מבצעים הכפלה במכנה המשותף, אבל במקרה שהיא מעבירה מספר לא רציונלי, אכלנו אותה, ומסתבר שהאלגוריתם לא תמיד עוצר, ולכן קשה לקרוא לו "אלגוריתם".

אז יש הבדל כלשהו שבגללו האי רציונליים "נוחים פחות". לא יודע אם זה מה שיגרום לי להטביע מישהו.
בשם הבורים 310023
האם עלינו להסיק שיש סיבות אחרות להטביע מישהו?
בשם הבורים 310330
אתה מכיר את החידה על שולחן הביליארד והכדור שנורה בזוית אקראית מאחת הפינות שלו? אם אתה לא מכיר, עכשיו אתה כבר (כמעט) מכיר.
בשם הבורים 310336
אני עכשיו כמעט מכיר, אבל לא ברור לי מה הקשר.
בשם הבורים 310353
טוב, אכלת את הפתיון, הנה החידה (אלא שעכשיו פתרונה קל להפליא, אם כי גם לפני כן היא לא היתה קשה במיוחד): לפניך מלבן בעל הצלעות A ו B (שניהם רציונליים). מאחת הפינות שלו יורים כדור נקודתי בזוית כלשהי אלפא. אין חיכוך וכל התנגשות בדפנות היא אלסטית לחלוטין. האם מובטח שהכדור יפגע באחת מפינות המלבן? אם לא, מהו התנאי שהזוית אלפא צריכה לקיים כדי שזה יקרה?
בשם הבורים 310369
ניחוש: סינוס הזווית צריך להיות מספר רציונלי? (נראה לי שזה הכרחי, לא ברור אם זה מספיק).
בשם הבורים 310389
נסמן את ממדי הלוח כ-X ו-Y ואת הזוית ההתחלתית ב-a. בכל מרווח DX בין פגיעה בדופן "העליונה" ל"תחתונה" (או להיפך) עובר הכדור Ysin a. קל להראות שגם כאשר הכדור פוגע בדופן צידית הוא עובר את אותו DX כמרחק אופקי מצטבר (כי זה כמו להצמיד עוד שולחן וכו'). כעת, כדי לתאר פגיעה באחת הפינות נקבל את המשוואה הבאה:

nYsin a = mX

(מספר ה-DXים הוא כפולה שלמה של X)
כאשר התנאי הוא ש-m ו-n צריכים להיות מספרים טבעיים. נסדר קצת את המשוואה ונקבל:

m = n * Y/X * sin a

מכאן ברור ש-sin a רציונלי זה תנאי הכרחי, כי כל שאר הגורמים הם רציונלים. אפשר גם להניח לצורך הפשטות ש-X גדול מ-Y (אם לא אז פשוט מחליפים את הממדים ביניהם ולוקחים את הזווית המשלימה ל-‏90) ועל כן Y/X בין 0 ל-‏1 (אם זה עוזר במשהו). מי ממשיך מכאן?
נסתמו לי הסינוסים 310515
ראה תגובתי לגדי.
בשם הבורים 310514
אם הטריק של ערן לא מבהיר לך את התמונה הנה הסבר: במקום לחשוב על החזרות מהדפנות, תאר לעצמך שהשולחן "מוכפל" לכל הכיוונים ויוצר סריג אינסופי של מלבנים.

ואידך זיל. מעניין שגם אתה וגם ערן מדברים, משום מה, על סינוס הזוית, בעוד הגודל הטבעי שקופץ לעין הוא דווקא הטנגנס.
בשם הבורים 310516
הניחוש שלי נראה פתאום די טיפשי. אם השולחן הוא ריבוע ואני משתמש בזווית של 45 מעלות, סינוס הזווית יהיה אי רציונלי...

טוב, בפעם הבאה אולי כדאי שאני *אחשוב* על השאלה לפני שאני עונה עליה.
בשם הבורים 310518
מילא, לחשוב על השאלה זה עניין אחד, אבל לפחות לקרוא את התשובה... (טנגנס, טנגנס)
בשם הבורים 310000
לא. אין לי שום עניין עם שבר עשרוני. כל מספר רציונלי, באופן עקרוני, גם אם הסדרה החוזרת שהוא מגיע אליה בשלב מסוים אחרי האפס היא גדולה מאוד - היא עדיין סופית. אשר על כן, גם אם ייקח זמן רב לחשב אותה, עדיין אנחנו יכולים לדעת בדיוק את גודלו. במספר אי רציונלי, גם אם נחשב את מיליון, או אפילו מיליארד, הספרות שאחרי האפס - לא תהיה לנו כל אינדיקציה, בלי חישוב נוסף, מהי הספרה הבאה.
בשם הבורים 310009
ואני שב ושואל, אם במקום שברים עשרוניים היינו לומדים בבי"ס שברים משולבים - מה היה קורה לתאוריה שלך? (בפיתוח עשרוני, רציונלי = מחזורי החל משלב מסויים. בפיתוח לש"מ, רציונלי = סופי, אי-רציונלי ממעלה 2 = מחזורי החל משלב מסויים).
בשם הבורים 310014
מה זה לש"מ?
בשם הבורים 310019
לשברים משולבים.
בשם הבורים 310016
את כותבת "אין לי שום עניין עם שבר עשרוני" ועדיין - כל ההתיחסות שלך היא לשברים עשרוניים - המחזוריות של הסדרה, החשיבות בחישוב הספרה הבאה.
יש יצוגים רבים אחרים למספרים, ואני עדיין לא מבין מה החשיבות של היצוג העשרוני, חוץ מזה שהוא זה שאנחנו רגילים לו כי ככה אנחנו רואים במחשבון או כי ככה לימדו אותנו בבית הספר.
יצוג עשרוני הוא פשוט טור אינסופי מסויים. יש לו הרבה יתרונות, אבל הוא לא "נכון" יותר או מייצג את "הגודל" יותר מכך שהמספר הוא פתרון של משוואה, או היחס בין שני גדלים, או גבול של סדרה (e, לשם דוגמה).

חזרה לעמוד הראשי

מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים