בתשובה לגדי אלכסנדרוביץ', 24/05/05 21:06
מחשבות חדשות (שלי) על מאמרים ישנים 303185
אתה לא רוצה לחשוב על זה לבד?
אתה אדם רשע :-) 303219
אתה אדם רשע :-) 303222
הטעות שלי היא בחישובים, או שאני מפספס כאן משהו עקרוני שמעיד על זה שאני לא מבין מתמטיקה בכלל והסתברות בפרט?
אתה אדם רשע :-) 303237
התשובה המתבקשת היא תגובה 303185, אבל אז יגידו לי עוד פעם שאני רשע, וזו טענה שאני לא מוכן לקבל. מצד שני, אני באמת חושב שזו בעייה שראוי לחשוב עליה. אז אני רק אסביר למה אני קצת מענה אותך (ואת עומר), ואם תתייאש אני אסביר איך אני רואה את הפתרון של ה"פרדוקס" הזה.

אתה התחלת מהבעייה הקלסית של המעטפות עם הסכום הכפול. הפתרון שלך לבעייה היה ציון העובדה שבשאלה חסר נתון (איך הוגרל הסכום במעטפה הקטנה), והאבחנה שההגרלה הזו אינה יכולה להיות אחידה. הפתרון הזה מופיע כמעט בכל מקום בו ראיתי דיון בשאלה הזו, אבל הוא מאוד לא שלם. הוא נכון במובן זה שהשאלה לא אומרת מהי ההתפלגות, ולכן הערכת התוחלות אינה נכונה; אבל הוא יוצר רושם שגוי לפיו, ברגע שנבחר התפלגות מסויימת מפורשת, הבעייה תיעלם. היא לא, כמו שהתרגיל שהצגתי מראה.

לכן, אין זה נכון גם לומר שבעיית המעטפות קשורה לאי-היכולת לבחור מספר טבעי בהתפלגות אחידה. אפשר להשאיר אותה בעינה עם התפלגות גיאומטרית.

אם זה מנחם אותך, אתה בחברה מכובדת למדי:

בשני המאמרים האלה יש משפטים לא זהירים מהסוג שתיארתי. המאמר של דב סאמט, בכל אופן, נחמד מאוד. התכתבתי גם איתו וגם עם דוולין בניסיון לברר את מקורה של הגרסה החריפה יותר שהבאתי, ללא הצלחה; דוולין לא הכיר אותה, ודב זוכר ששמע עליה באיזשהו כנס לפני כמה שנים. אני משוכנע ששמעתי עליה מאבא שלי, אבל הוא לא הצליח לזכור מאין הוא עצמו שמע עליה.

הדרך לחשוב על הבעייה הזו, לדעתי, היא לנסות ראשית לראות אם יש פה איזה פרדוקס מתמטי(!). אין, אבל יש אבחנה מעניינת שאולי שווה לזכור אותה.
אתה אדם רשע :-) 303243
אני הייתי מציע את התרגיל הבא בתור שאלה מנחה:
*
*
*
*
*
**************************
ספוילר ל"פתרון" הפרדוקס (לפי דעתי, אבל אולי אלון עוד יפתיע)
**************************
*
*
*
*
*
נניח שבשתי המעטפות היו שמים סכומי כסף מההתפלגות שאלון תאר _באופן בלתי תלוי_.
כלומר מגרילים פעמיים ושמים את הסכומים המתקבלים במעטפות.
נותנים לך אחת מהם, אתה פותח, מסתכל ואז מציעים להחליף. מה כדאי לעשות?
אתה אדם רשע :-) 303255
פרדוקס מתמטי לא ממש יכול להיות. אם היינו מגיעים לסתירה כלשהי מתוך האקסיומות של תורת ההסתברות, זה היה אומר שהאקסיומות של תורת ההסתברות לא ממש שוות הרבה - ובמקרה הזה (להבדיל מהפרדוקס הקלאסי), ההסתברות מוגדרת היטב. ה"אנומליה" היחידה שיש כאן, עד כמה שאני רואה, היא שהתוחלת של המשתנה המקרי של הסכום של המעטפה הפחות שווה היא אינסופית.

אז הבעיה צריכה להיות ב"פרשנות" שנותנים לתוצאות. המצב הוא שתמיד משתלם להחליף. את זה אני מוכן לקבל; זה לא נראה לי יותר אי סביר אינטואיטיבית מאשר פתרון הבעיה של מונטי הול. הבעיה האחרת היא בזה שאפשר לכאורה לצבור תוחלת עוד ועוד, על ידי סדרה של החלפות של המעטפה, כי תוחלת של "החלפה" היא חיובית. אני לא בטוח שזה אומר בדיוק את זה - צריך לבדוק מה התוחלת של שתי החלפות, ושלוש וכו', ויש לי הרגשה שהיא לא הולכת לגדול. לכן, למרות שאתה "מרוויח" מהחלפה, אחרי ההחלפה הראשונה אין ממש טעם להמשיך (ולכן, במובן מסויים, גם אין טעם להחליף מלכתחילה). אבל את זה אני צריך קודם כל לבדוק מתמטית, ולא ברור לי אם זה הכיוון הנכון בכלל (כמו ב"מדריך הטרמפיסט לגלקסיה", כשאני לא יודע מה השאלה, התוצאה היא...)
אתה אדם רשע :-) 303258
"המצב הוא שתמיד משתלם להחליף. את זה אני מוכן לקבל" - באמת? אם כך, משתלם לך להחליף את המעטפות גם בלי שבכלל פתחת את הראשונה, ואם זה לא פרדוקס בעיניך פנה לאופטומטריסט הקרוב.
אתה אדם רשע :-) 303259
אני בטוח שאתה לא רוצה שתמיד יאכילו אותך בכפית - ככה לא לומדים. "כשאני לא יודע מה השאלה" זה המצב הרגיל במחקר מתמטי, לעומת מבחן באינפי.

נניח שאנחנו הופכים את סיפור המעטפות למשחק: מה שיש במעטפה שבחרת לבסוף הולך אליך, והמעטפה השנייה חוזרת אלי. אנחנו משחקים שוב ושוב. האם יש לך יתרון במשחק הזה? מה תוכל לומר על המשתנה המקרי המתאר את הרווח שלך בסיבוב אחד של המשחק?
אתה אדם רשע :-) 303303
מכיוון שאתה ממילא הולך לכתוב מחדש את הערך על "פרדוקס המעטפות" בויקיפדיה, הנה עוד פרדוקס:

במשחק שלי קובעים פרס התחלתי בגובה שקל אחד.
אתה יכול לבחור בין שתי אפשרויות: לקבל את הפרס, או להטיל מטבע. אם הצלחת בהטלה, הפרס מוכפל פי 3 וחוזרים לשלב הבחירה (ואם לא, הפסדת).

ניתוח אסטרטגי: כאשר הפרס הוא X, אני יכול לקבל אותו ולצאת ברווח של X, או לחכות לשלב הבא - בסיכוי 1/2 אני מפסיד, ובסיכוי 1/2 אני יכול לבחור פרס של 3X. ברור שכדאי להמר, כי סיכויי הרווח וההפסד שווים, והרווח האפשרי עולה בהרבה על ההפסד.
אם כך - מתי תפרוש מהמשחק? וכמה תרוויח באסטרטגיה הזו?
אתה אדם רשע :-) 303304
לא קוראים לכל המשפחה הזאת בשם דילמת(או פרדוקס) המהמר?
סט. פטרסבורג 303321
סט. פטרסבורג 303356
גם. בעצם קוראים לזה "מפלת המהמר" (gamblers ruin).
סט. פטרסבורג 303917
לא. מפלת המהמר מתייחסת למצב טבעי הרבה יותר: אם כספך מבצע הילוך מקרי, לא משנה כמה עשיר אתה בהתחלה, בסוף תתרושש (בתנאי שאתה אף-פעם לא אומר "דייני").
סט. פטרסבורג 304114
ביררתי ואתה צודק (כמובן).
לנינגרד 303357
אתה אדם רשע :-) 303339
למה שאני אפרוש? (חוץ ממגבלות חיצוניות של זמן?)
אתה אדם רשע :-) 303344
האסטרטגיה שלך היא לא לפרוש לעולם?
כמה תרויח ככה?
אתה אדם רשע :-) 303350
תלוי כמה זה X

במידה וX זה סכום סביר (נניח, מעל ל5 שקלים) אז אני ארוויח המון.
פרדוקס היחפן 303354
1. בלי לפרוש מהמשחק אתה לא מקבל שום דבר.
2. בשום שלב לא כדאי לפרוש (= תמיד תוחלת הרווח גדולה יותר אם ממשיכים).
3. אם לא תפרוש, הסיכוי שתפסיד בסופו של דבר הוא 1.
4. לכן האסטרטגיה "בחר תמיד באפשרות המשתלמת ביותר" מביאה לתוצאה הגרועה ביותר!
אתה אדם רשע :-) 303531
הבה נחרוג מהתחום התיאורטי לתחום המעשי: כמה אתה מוכן לשלם תמורת השתתפות במשחק הזה?
אתה אדם רשע :-) 303587
אם X שווה ל10 או 20 שקלים, אני מוכן לשלם עשרות אלפי שקלים כדי להשתתף במשחק הזה (אולי אפילו 100,000-200,000)
אתה אדם רשע :-) 303596
לא לגמרי ברור לי מהו X אצלך. כשעוזי ניסח את ה"פרדוקס" (תגובה 303303), הוא ציין שהפרס ההתחלתי הוא בגובה שקל אחד; הוא דיבר על X רק בשביל לנתח מה אפשר/כדאי לעשות בשלב כללי כלשהו במשחק (ו- X שם הוא כמובן חזקה שלמה כלשהי של 3).

אז הרשה לי לחזור על שאלת שכ"ג, רק ביתר דיוק: כמה אתה מוכן לשלם תמורת השתתפות במשחק הזה (עם פרס התחלתי בגובה שקל אחד)?
אתה אדם רשע :-) 303597
כמה זמן לוקח סיבוב?
אתה אדם רשע :-) 303602
10 שניות.
אתה אדם רשע :-) 303620
לא הבנתי נניח ואני זוכה בהטלת מטבע ראשונה ב3 שקלים. האם הפרס על ההטלה הבאה הוא 9 ש"ח וכו..?
אתה אדם רשע :-) 303622
לא, אם זכית ב- 3 שקלים המשחק נגמר.
אתה אדם רשע :-) 303623
כבר בהתחלה אתה יכול לזכות בשקל אחד שלם. אם תרצה להמשיך במשחק, עליך לוותר עליו ולהטיל מטבע: זכית (נגיד "עץ"), המשחק נמשך כשאתה יכול לזכות בשלושה שקלים. הפסדת, המשחק נגמר.
כעת אתה יכול לזכות בשלושה שקלים, או להמר. אם תהמר ותפסיד, המשחק נגמר (ואתה לא מקבל כלום). אם תהמר ותזכה, הפרס גדל לתשעה שקלים, ואתה שוב יכול לבחור האם לקבל אותו או להמשיך להמר.
וכן הלאה.

בסופו של דבר אתה מקבל לכל היותר פרס אחד: ברגע שהחלטת להשתפן ולוותר על המשך המשחק ועל הסיכוי לפרסים הרבה יותר גדולים, תוכל ללכת הביתה עם ה-‏10460353203 שקלים העלובים שלך...
אתה אדם רשע :-) 303632
הבנתי.

בוא נראה, הטלה לוקחת 10 שניות, ויש 3600 שניות בשעה, בוא נאמר שמקדישים לנושא 10 שעות ביום- ז"א 36,000 שניות. למשך 3 שנים זה יוצא 36 מיליון שניות- משמע 3.6 מיליון הטלות.

בגלל שבמספר כ"כ גדול של הטלות אפשר לקבוע כמעט בדיוק מה יהיה הסיכוי שאני אזכה ב 30 או 40 פעמים רצוף . אני אוכל לקבוע מספר מסוים ( בשביל זה אני צריך מחשבון) וברגע שאני מגיע לאותו מספר אני אפסיק את המשחק.

אח"כ אני אחשב כמה זה 3בחזקת 30 או 40 .

אני מוכן לשלם 70-80 אחוזים מאותו מספר.
אתה אדם רשע :-) 303634
אתה לא יכול לשחק במשחק הזה כמה פעמים שתרצה. מוצע לך משחק אחד (לפי מה שהוסבר לך על "משחק"). כמה אתה משלם?

(חידה נספחת שכבר נפתרה כאן כמדומני: איך נוכל להטיל מטבע כשאתה ואני נמצאים משני עבריו של קו טלפון ולא סומכים איש על רעהו?)
אתה אדם רשע :-) 303643
מה שהתכוונתי בתגובה הקודמת זה לבצע משהו כמו הוראת קבע. אני אחלק את הסכום שעוזי חישב למספר הפעמים שאני אפסיד במשחק עד שאגיע למספר הנצחונות הרצוף המיוחל ואקח את כל הקופה.
אתה אדם רשע :-) 304083
אתה עושה לך חיים קלים.

אם יש לך קרן אינסופית כדי לכסות את ההפסדים עד אותה זכיה שתניח את דעתך, בשביל מה לך בכלל לבזבז את זמנך על משחקים מטופשים?

בוא נניח שמצבך הכלכלי הוא בערך כמו שלי: יש לך קצת כסף שאתה מוכן לסכן תמורת הימורים עם תוחלת לא-שלילית, אבל לא סכום אינסופי. אני מציע לך הזדמנות *אחת* לשחק נגדי בתנאים שהובהרו, ושואל אותך כמה תהיה מוכן לסכן. סמיילי הציע חצי שקל. אתה מוכן להעלות את הרף? עד איזה גובה?
הבהרה. 304094
אני הצעתי חצי שקל בתנאים שפורטו בתגובה 303630 ולא באלה שפורטו בתגובה 303629
הבהרה. 304098
תמורת האופציה לאסוף שקל לכיסך אתה מציע רק חצי שקל? אני בטוח שיזם זריז מחשבה יהיה מוכן לשלם לפחות 99 אג'. אני מחכה להתעות טובות יותר.
תמשיך לחכות 304099
בינתיים החצי שקל שלי הוא ההצעה הטובה ביותר שקיבלת (מה שגורם לי לשקול להוריד את ההצעה שלי ל25 אג').
תמשיך לחכות 304101
חכה, היזמים זריזי המחשבה עוד יתעשתו.
טוב, נו 304171
1 ש"ח (שוטף + 60)
תמשיך לחכות 304176
אני קונה במאה, ומוכר לך את הזכות להפסיק את המשחק לפני הסיבוב הראשון במאתיים חמשים...
תמשיך לחכות 304346
מאה ש"ח. אוקיי, סוף סוף מישהו לא מסתפק בשטיקים אלא נענה לאתגר. מאה ועשרה, מישהו?

(ההנהלה אינה מתחייבת לקבל את ההצעה הזולה ביותר או כל הצעה שהיא)
אתה אדם רשע :-) 303635
חשבונית על-סך 8510365821339850160.7 שקלים בדרך אליך.

אבל לא ברור לי למה תרצה לעצור בשלב ה-‏40 של המשחק. אמנם אם תהמר תפסיד בסיכוי של 0.5, אבל אם תנצח בהימור, *תשלש* את הרווח שלך. האסטרטגיה שהובילה אותך עד לשלב הארבעים ("בחר באפשרות שתוחלת הרווח ממנה גדולה יותר") אומרת להמשיך.
אתה אדם רשע :-) 303637
אל תשכח את המע''מ.
אתה אדם רשע :-) 303642
טוב, ההסבר שלך יהיה נכון לגבי כל מספר שאני אציע. לכן, אני אציב מספר שרירותי שיהיה גבוה מספיק כדי להצדיק את ההשקעה.

אני לא יודע מה איתך אבל מבחינתי אין הרבה הבדל בין 800 טריליארד שקלים ל2600 טריליארד שקלים לכן זה לא יהיה פספוס גדול מבחינתי.
ניסוח נגיש יותר 303629
בהתחלה מטילים מטבע, אם הוא נופל על עץ, אתה לא מקבל כלום והמשחק נגמר, אם הוא נפל על פלי, אתה יכול לקחת שקל יחיד, או להמשיך במשחק.
אם המשכת במשחק, מטילים את המטבע שוב, אם הוא נופל על עץ, אתה לא מקבל כלום והמשחק נגמר, אם הוא נפל על פלי, אתה יכול לקחת 3 שקל, או להמשיך במשחק.
אם המשכת במשחק, מטילים את המטבע שוב, אם הוא נופל על עץ, אתה לא מקבל כלום והמשחק נגמר, אם הוא נפל על פלי, אתה יכול לקחת 9 שקל, או להמשיך במשחק.
אם המשכת במשחק, מטילים את המטבע שוב, אם הוא נופל על עץ, אתה לא מקבל כלום והמשחק נגמר, אם הוא נפל על פלי, אתה יכול לקחת 27 שקל, או להמשיך במשחק.
אם המשכת במשחק, מטילים את המטבע שוב, אם הוא נופל על עץ, אתה לא מקבל כלום והמשחק נגמר, אם הוא נפל על פלי, אתה יכול לקחת 81 שקל, או להמשיך במשחק.
....
אם המשכת במשחק, מטילים את המטבע שוב, אם הוא נופל על עץ, אתה לא מקבל כלום והמשחק נגמר, אם הוא נפל על פלי, אתה יכול לקחת 3^n שקל, או להמשיך במשחק.
...
השאלה היא מתי לפרוש, לכאורה, כשאתה נמצא במצב לקחת 81 שקל או להמשיך, כדאי לך להמשיך, משום שהסיכוי להרויח 243 ש"ח הוא חצי, והסיכוי לא להרויח כלום הוא חצי, ככה שהתוכלת של להמשיך היא 121 ש"ח וחמישים אגורות, בעוד שהתוכלת של לצאת היא 81 ש"ח (שזה פחות). הבעיה היא שאותו חישוב מתקיים לכל סכום, לכן אף פעם לא כדאי לפרוש, אבל מצד שני, ודאי ברור לך שאם לא תפרוש מתישהו המטבע יפול על עץ, ואתה תפסיד את כל הרווח.
אתה אדם רשע :-) 303630
הנה המשחק:

על השולחן מונח שקל אחד. אתה יכול לאסוף אותו וללכת הביתה, או לבקש מעוזי שיטיל מטבע. אם בחרת באפשרות השנייה, עוזי מטיל את המטבע, ושניכם מסתכלים על התוצאה: אם יצא עץ, אתה הולך הביתה חסר כל, אבל אם יצא פלי, עוזי משלש את הסכום על השולחן, כך שכעת מונחים עליו שלושה שקלים. כעת אתה שוב יכול לאסוף את הכסף מהשולחן וללכת הביתה, או לבקש מעוזי להטיל מטבע נוספת. אם בחרת באפשרות השנייה ויצא עץ, אתה הולך הביתה מחוסר כל, ואחרת (יצא פלי) עוזי שוב משלש את הסכום על השולחן, כך שעכשיו מונחים עליו תשעה שקלים, וחוזר חלילה.

כמה אתה מוכן לשלם על מנת להשתתף במשחק?
אתה אדם רשע :-) 303636
אולי זה נושא למכירה פומבית. יהיה מעניין לשמוע הצעות מאיילים שונים.

(אני כמובן אארגן את המשחק תמורת קומיסיון צנוע)
חצי שקל פעם ראשונה 303638
אתה אדם רשע :-) 303981
זה שאתה שואל רק מוכיח שאתה גבר:
"הנשים שהשתתפו בניסוי הרוויחו בממוצע לא פחות מהגברים בכל אחת מהאפשרויות האלה. אך כשהועמדה
לפניהן בחירה בסיבוב הבא - השתתפות בתחרויות, או לחזור למה שעשו בתחילה ולקבל סכום נמוך בהרבה
על כל תשובה נכונה, רוב הנשים העדיפו לא להתחרות, גם לא אלו שהשיגו את התוצאות הטובות ביותר
בסיבובים הקודמים. רוב הגברים, לעומת זאת, בחרו באופציית התחרות, אפילו אלה שהישגיהם היו הגרועים
ביותר."

(מתוך http://www.haaretz.co.il/hasite/pages/ShArtPE.jhtml?...)
אתה אדם ספקולנט 303650
אני לא מבין מה פרדוקסלי פה.

כל מי שטיפה התעניין בשוק ההון מכיר את הטרייד-אוף בין תשואה לבין ביטחון. בכל השקעה קיים יסוד של אקראיות, ולכן אפשר לדבר על *תוחלת* התשואה שלה ועל *שונות* התשואה (יש כמובן דרכים אחרות, פרט לשונות, למדוד וריאביליות, אבל בואו נצטמצם לשונות).

אנשים מעדיפים תוחלת תשואה גבוהה, ושונות תשואה נמוכה ("שנאת סיכון"). דא עקא, תוחלת ושונות הולכות יד ביד: כשהאחת גבוהה, כך גם האחרת. משקיעים ספקולנטיים מעדיפים השקעות עם תוחלת תשואה ושונות תשואה גבוהות, ומשקיעים שמרניים יעדיפו אותן נמוכות. הבחירה היא עניין אישי/סובייקטיבי/פסיכולוגי, ולכל משקיע יש, או אמורות להיות, "עקומות אדישות" (נדמה לי שככה קוראים להן) שמבטאות את העדפותיו בנוגע לטרייד-אוף הנ"ל.

פואנטת ביניים: אף אחד לא מסתכל רק על תוחלת התשואה (אחרת כל חברות הביטוח, הטוטו ומפעל הפיס היו פושטים את הרגל); יש לקחת בחשבון תמיד גם את השונות.

"אסטרטגיה" במשחק של עוזי היא לפרוש לאחר n סיבובים ‏1, אם לא הפסדנו בהטלת המטבע קודם לכן, כמובן. אם בחרתי n כלשהו, אזי ניתן לחשב את תוחלת ה"פדיון" מהמשחק (ולא הרווח, משום שתכף אדבר על מחיר הכניסה), וכן את שונות הפדיון ‏2.

כל בחירה של n מתאימה לנקודה במישור התוחלת/שונות; בין כל הנקודות האלו, אני אבחר את זו שיושבת על עקומת האדישות ה"שווה" ביותר שלי (ייתכן שיש יותר מאחת, ואכן ביניהן אני אהיה אדיש). העקומה הזו חותכת את ציר ה"תוחלת" בנקודה כלשהי, וערך תוחלת זה הוא בדיוק הסכום המקסימלי שאסכים לשלם על מנת להכנס למשחק.

שתי הערות טכניות: (א) הנחתי שכל הטלות המטבע מתבצעות כהרף-עין, כך שאין פה אלמנט של זמן; (ב) האסטרטגיה של להמשיך לשחק לנצח מבטיחה תוחלת פדיון של אפס, ולכן היא לא מעניינת.

אז איפה הפרדוקס?
_____________
1 לפרוש עם השקל ההתחלתי משמעו לפרוש בסיבוב מספר 0
2 פה כתבתי קודם את הנוסחאות המדוייקות לשני הגדלים הנ"ל, אבל המוזילה שלי מציגה אותן בצורה מעוותת שלא הצלחתי לתקן. לא משנה - העקרון לא תלוי בנוסחאות
אתה אדם ספקולנט 303688
אניחושב שאתה מתחמק מהבעיה (לא ממש, רק לא מפרט עד הסוף), נסה לחשוב עליה מהצד השני. נגיד שאתה בעל קזינו שרוצה להכניס משחק חדש, ומעוניין לקבוע את המחיר שלו. לצורך ההנחה, נניח שאתה יודע שלא תהיה לך בעיית לקוחות.

אם המשחק הוא הטלת מטבע פשוטה, עץ לוקח 10 שקל, פלי לא לוקח כלום, אז התוכלת של המשחק היא 5 שקל, ולכן אם מספיק אנשים ישחקו, העלות של משחק (נתעלם לרגע מעבודה, פחת וכל זה) תשאף ל5 שקל. לכן, אם תקח 7 שקל, תרוויח *בממוצע* 2 שקל מכל משחק.

להבדיל, אם המשחק הוא אין סופי עם תוחלת אין סופית, כמו זה שעוזי תיאר למעלה, לא כדאי לך להכניס משחק כזה בשום מחיר, משום שבכל מחיר שתכניס, עבור מספר לקוחות גדול מספיק, בממוצע תפסיד כסף.
אתה אדם ספקולנט 303692
אז נניח שאתה טיפוס כזה שמוכן להימור בתוחלת X בתנאי שסטיית התקן אינה עולה על 10X.

במקרה כזה, זה לא עוזר שאתה מחליט מראש על אסטרטגיה: אם הגעת לשלב ה-n, אתה צריך להחליט האם לסכן את הפרס הנוכחי X (שהוא כמעט כל רכושך, אם n מספיק גדול), בהימור שמביא לרווח של X/2 בתוחלת, עם סטיית תקן 3X/2. כל הזמן אותו יחס. כל הזמן כדאי להמשיך להמר. עד שמפסידים הכל.
אתה אדם ספקולנט 303912
את תגובה 303650 כתבתי במטרה לענות על השאלה "כמה היית מוכן לשלם על מנת להשתתף במשחק?", וכנראה מיקמתי אותה לא טוב (אם כי אני עדיין עומד מאחורי מה שכתוב בה). אז בוא נשכח משיקולי שנאת סיכון.

כתבת: "הימור שמביא לרווח של X/2 בתוחלת"; אתה מניח אם כך, במובלע, שהמשחק *בוודאות יעצור* בשלב הבא, אבל מייד לאחר מכן מדבר על "להמשיך להמר". זה קצת בעייתי בעיני, ועשוי להיות שורש הקושי (אני עדיין חושב שצריך להחליט מראש על אסטרטגיה).

את השאלה הבסיסית שלך אני מבין בתור "כיצד צריך לפעול אדם שאכפת לו רק מתוחלת הזכייה?". אם נסכים ש"מרחב האסטרטגיות" הוא זה שהצעתי, אזי התשובה היא שזוהי בעיית אופטימיזצייה לא חסומה, ולכן פשוט אין דרך פעולה אופטימלית: לאסטרטגיה "פרוש בשלב n" יש ערך 3/2 בחזקת n, ולקבוצת הערכים הנ"ל אין מקסימום. לא צריך את כל המנגנון ההסתברותי כדי לייצר בעייה כזו - אני מציע לך כל סכום שתבחר; בכמה תבחר?
אתה אדם ספקולנט 304014
אחת מההנחות הקבועות בתורת המשחקים היא שאפשרות נוספת לא יכולה להזיק. אם בצעד הבא הפרס עומד על 3X (וזוכים בו בסיכוי חצי), אז תוחלת הרווח היא *לפחות* 3X/2; העובדה שאפשר להמשיך להמר אמורה להגדיל את הרווח ולא להקטין אותו.

גם הבעיה שאתה מציע מעניינת, אבל ההבדל הוא שבסיטואציה של המשחק יש רק שתי אפשרויות (בכל שלב, כמובן). זה הופך את העובדה שהרווח לא חסום ליותר מסובכת.

אם העסק לא מספיק מסובך, הנה בעיה חדשה. נניח שאנחנו מחליפים מעטפות. אני מטיל מטבע עד שנופל "עץ", ושם במעטפה 3-בחזקת-מספר-המטבעות. אתה עושה אותו דבר, עם 4-בחזקת (כל ההגרלות בפיקוח רואה חשבון). כעת מחליפים מעטפות, וכל אחד מקבל את הפרס שהשני הטמין במעטפה. האם אתה מעוניין לשחק? זה נשמע כמו רמאות, אבל אני יכול לשכנע אותך להסכים: אני אפתח את המעטפה שלי ראשון!

אם קיבלתי 4, המשחק משתלם לך. אם קיבלתי 16, המשחק משתלם לך. וכן הלאה: לא חשוב כמה אני מקבל, אתה תמיד מרוויח.
אתה אדם רשע :-) 303394
התוחלת של המשתנה המקרי של הרווח המוחלט שלי היא אינסוף. לעומת זאת, אם אני מסתכל על רווח "יחסי", כלומר הרווח שלי פחות הרווח שלך, אני מקבל משתנה מקרי סימטרי לגמרי סביב האפס, ולכן התוחלת, שלא במפתיע, היא אפס (הרי הסיכוי שלי לבחור במעטפה הנכונה, בלי קשר לכמות ההחלפות שלי, הוא בדיוק 50:50).

אני חושב שאני מתחיל לראות את הבעייתיות כאן. נניח שבמעטפה היה פשוט מושם סכום כסף קבוע (ובמעטפה השנייה היה מושם סכום גדול פי 3), בלי שיאמרו לי איך הוא נבחר. מן הסתם תוחלת הרווח היחסי שלי אם הייתי דבק במעטפה שלי הייתה כמו תוחלת הרווח היחסי אם הייתי מחליף מעטפה - אפס.

אני מתחיל לחשוב שהבעיה שלי היא בשלב שבו אני אומר "יש לי סיכוי של 50:50 שבמעטפה שלי יש את הסכום הקטן יותר, כלומר סיכוי של 50:50 שאם אני אחליף אני ארוויח 2x, ואחרת אפסיד 2x/3". אני מתקשה לנסח במילים מה בדיוק הבעיה לדעתי, אבל אני מרגיש שזה נובע מכך שבשלב שבו אני אומר את זה, הסכומים כבר הוגרלו ונמצאים במעטפות, ולכן אם אני אחליף אני יכול להשיג רק רווח בטוח או הפסד בטוח. מכיוון שהסכומים כבר הוגרלו, המצב שבו אני נמצא כשאני בא לבחור בין המעטפות זהה למצב שבו במעטפות הושם סכום כסף קבוע בלי הגרלה. לכן לא נכון לקחת את התוחלת על הרווחים מהבחירה הזו. למעשה, אני לא חושב שאני מסוגל לכתוב משתנה אקראי שממדל את ה"בחירה להחליף".

אבל די קשה לי להתנסח כאן, האמת.
אתה אדם רשע :-) 303916
"אם אני מסתכל על רווח "יחסי", כלומר הרווח שלי פחות הרווח שלך, אני מקבל משתנה מקרי סימטרי לגמרי סביב האפס, ולכן התוחלת, שלא במפתיע, היא אפס".

אתה בטוח?
אתה אדם רשע :-) 303926
כמובן שאני לא בטוח, אבל זה מה שנראה לי.

המשתנה המקרי של הרווח היחסי שלי הוא תמיד מה שאני הרווחתי פחות מה שאתה הרווחת. כלומר, הערך שלו תמיד יהיה שתיים כפול שלוש בחזקת k כלשהו. הוא מתקבל רק עבור המצב שבו אחרי ההחלפה יש לי מעטפה עם 3 בחזקת k+1, ולך יש 3 בחזקת k. ההסתברות לסיטואציה כזו היא קודם כל 1/2 בחזקת k (כדי שיוגרל 3 בחזקת k) ואחר כך כפל עוד 1/2 - ההסתברות שאני אתחיל עם המעטפה שמכילה את הסכום היותר קטן. אני כזכור תמיד מחליף.

עכשיו, זה נראה לי סימטרי לגמרי עם האפשרות שאני לא ארוויח אלא אפסיד: כאן שוב צריך להגריל 3 בחזקת k (בהסתברות 1/2 בחזקת k) אבל הפעם אני צריך להתחיל עם המעטפה עם הסכום הגבוה יותר, ולכן כופלים שוב ב-‏1/2.

האם אני מפספס כאן משהו ו"הפתרון" הוא "התוחלת (של הרווח המוחלט) אינסופית ולכן זה נראה מוזר"? זה פתרון שאני מתקשה לקבל.
אתה אדם רשע :-) 303930
אתה לא עובד מסודר. למדת הסתברות, או עוד לא? קודם כל ראה מהו מרחב המדגם, אח"כ בדוק מה ערכו של המשתנה המקרי בכל נקודה, רשום ביטוי לתוחלת שלו, ותראה מה יוצא. מה שלא יצא, זה לא יכול להיות "פתרון שאני מתקשה לקבל"; אנחנו בינתיים בשלב המתמטי. אחר-כך ננסה להבין מה זה אומר ולמה.

(אני לא מנסה להציק, רק להראות לך שיש ערך לעבודה מסודרת לפי ההגדרות. אתה כל הזמן רץ קדימה, מנחש את התשובה ותוהה אם אתה מפספס משהו, בפעם החמישית כבר כמדומני. אל תפספס, אז לא תצטרך לתהות. בכל זאת נראה שהכותרת הנגררת שהעניק לי אורי היא מוצדקת).
אתה אדם רשע :-) 303939
חשבתי שזה בדיוק מה שאני עושה, בכל הנוגע למשתנה המקרי של הרווח היחסי (כלומר, הרווח שלי פחות הרווח שלך). מכיוון שבכל חלוקה אפשרית של כסף במעטפות יש במעטפה אחת פי שלוש יותר מהשנייה, הערכים היחידים שיכול המשתנה המקרי הזה לקבל הם 2 כפול הסכום הנמוך יותר (אם אני לוקח את המעטפה עם הסכום הגבוה) או מינוס 2 כפול הסכום הנמוך יותר (אם אני לוקח את המעטפה עם הסכום הנמוך). עבור הערכים הללו, החישוב הוא מה שכתבתי בהודעה הקודמת.

פרט לאלה, אפשר גם להגדיר משתנה מקרי אחר, של הרווח המוחלט שלי, ויש לו בבירור תוחלת אינסופית. מבחינה מתמטית זה לא מפריע לי. מה שמפריע לי הוא טענה שבגלל שהתוחלת אינסופית, אז "משתלם" להחליף את המעטפות תמיד, טענה שנראית לי לא נכונה. אם מסתכלים על תוחלת הרווח המוחלט שלך אם אתה מחליף מעטפה, זה אינסוף, אבל ככה גם אם אתה לא מחליף מעטפה.
אתה אדם רשע :-) 303942
טוב, אני אכנע כי צריך ללכת לישון. החישוב שכתבת בהודעה הקודמת שגוי: אתה מסכם טור אינסופי וטוען שיוצא לך 0. אני מנחש שאם היית רושם הכל בדיוק (סיגמה כשאן הולך מאחד עד אינסוף של...) היית נזכר שטור כזה לא מסתכם לאפס רק כי אפשר לסדר את איבריו בזוגות המבטלים זה את זה. הטור הזה *לא מתכנס*. לא לאפס, לא לאינסוף, לא לשום דבר. למשתנה המקרי שלך *אין תוחלת*, וזה הלקח המתמטי הקטן שניסיתי לחלץ ממך. לא לכל משתנה מקרי יש תוחלת (וגם אם יש תוחלת, לא תמיד יש שונות, וכו').

על הפרשנות אני אכתוב בפעם אחרת. בינתיים רק אעיר שאת הפסקה השנייה שלך לא הבנתי; מישהו טען פה ש"בגלל שהתוחלת (של הרווח המוחלט) אינסופית, אז "משתלם" להחליף את המעטפות תמיד"? הטענה היא ששווה להחליף מעטפות כשאתה רואה 27 זוז. איזו תוחלת אינסופית יש פה?
אתה אדם רשע :-) 303946
צודק, פאשלה שלי. שכחתי שהחלק החיובי והחלק השלילי של הסכום לא יכולים שניהם להתכנס לאינסוף ולמינוס אינסוף (או ליתר דיוק, בחרתי להתעלם מזה מסיבה לא ברורה).

החלק השני אמר בערך ככה: אנחנו רואים שתמיד כדאי להחליף, בכל סיטואציה, וזה נראה לא סביר אינטואיטיבית, ולכן השאלה היא "מה גורם לזה". טיעון שלפיו זה קורה בגלל שהתוחלת של הרווח מהחלפה היא אינסופית לא נראה מספק במיוחד. (למען האמת, גם העובדה שלמשתנה המקרי של הרווח מהחלפה אין תוחלת לא ממש עוזרת לאינטואיציה שלי להבין את הפרדוקס).

חזרה לעמוד הראשי

מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים