|
||||
|
||||
זו פחות או יותר ההגדרה. שתי קבוצות הן מאותה עוצמה אם קיימת התאמה חח"ע ועל מאחת לשנייה (זה יחס שקילות, למעשה). כדי להראות שקבוצה אחת היא מעוצמה קטנה יותר מקבוצה אחרת די להראות התאמה חח"ע מה"קטנה" ל"גדולה", וזה מה שעשית כאן: קבוצת מנדלברוט מוכלת במישור הממשי (המרוכב, למעשה), כלומר יש התאמה חח"ע ממנה למישור (שפשוט מעתיקה כל נקודה לעצמה). |
|
||||
|
||||
תודה, אך לא נושעתי. התאמה חחע"ע גוררת שוויון עוצמות. ברור. את זה אפילו אני זוכר. אבל האם שוויון עוצמות גורר קיום התאמה חחע"ע שניתן *להגדיר*? ובמילים אחרות - האם ליד כל בית אפשר לבנות מסילת ברזל? |
|
||||
|
||||
כאן אני כבר לא בטוח, אבל נראה לי שכן. הרי כדי להראות ששתי קבוצות הן מאותה עוצמה תצטרך להראות התאמה חח"ע ועל ביניהן, אין כאן ממש דרך עוקפת (גם שימוש בקנטור-שרדר-ברנשטיין בונה התאמה חח"ע ועל שכזו, אם כי עד כמה שאני זוכר זה לא אפשרי באופן כללי לתאר אותה). אם למשל הראית ש-A שקולה ל-B ו-B שקולה ל-C אז קל מאוד לבנות התאמה חח"ע ועל מ-A ל-B: מרכיבים את שתי ההתאמות שכבר יש לך. אם תוכל להביא דוגמא למצב שבו אתה מוכיח ששתי קבוצות הן שקולות עוצמה בלי להראות התאמה חח"ע ועל בינן, זה מאוד יסקרן אותי. לדעתי *אי אפשר* לומר על שתי קבוצות שהן שקולות עוצמה מבלי להראות התאמה חח"ע ועל בינן - זו פשוט ההגדרה. מצד שני, אם ההתאמה שבונים בהוכחה של קנטור שרדר ברנשטיין לא נחשבת בעינייך למסילת ברזל, אז כן, לא ליד כל בית אפשר לבנות מסילת ברזל. |
|
||||
|
||||
האומנם אין דרך קיצור? קל מאוד להראות ש |C|=|R^2|>=|M|>=|R| וכיוון שהודות לקנטור ושות'|R^2|=|R| ברורה גם עוצמת M.כאן לא הראיתי שום התאמה אל או מאת M. ולא הצלחתי להשתכנע שחייבת להיות התאמה גדירה שכזו. הנקודה המעניינת ביותר לענייננו היא סברתך לגבי ההתאמה: "לא אפשרי באופן כללי לתאר אותה". אם במקרה מנדלברוט אי אפשר לתאר אותה, אי אפשר להגדיר חבורה מעל הקבוצה, לפחות לא באופן זה. ואז השאלה נותרת פתוחה! |
|
||||
|
||||
אני לא בטוח שהבנתי, בוא נראה: יש לי התאמה חח"ע מ-M אל R^2. יש לי גם התאמה חח"ע ועל מ-R^2 אל R והתאמה חח"ע מ-R אל M. אם אני ארכיב את שתי ההתאמות הללו אני אקבל התאמה חח"ע מ-R^2 אל M. כלומר יש לי התאמה חח"ע בשני הכיוונים ובקנטור שרדר ברנשטיין אני בונה התאמה חח"ע ועל מ-M ל-R^2 (ולכן גם ל-R ולכל קבוצה מעוצמת הרצף שתרצה). שוב, זה קם ונופל על כמה קונסטרקטיבית ההוכחה של קש"ב נראית לך. אני לא חושב שאי הקונסטרקטיביות שלה היא ברמות של אקסיומת הבחירה. |
|
||||
|
||||
פקששתי. אולי באמת כדאי שאני אחזור אל המחברות ואפסיק לבלבל את הציבור. תודה. |
|
||||
|
||||
בהינתן אקסיומת הבחירה - או משפט הסדר הטוב - כן. |
|
||||
|
||||
צריך להראות התאמה חח''ע בכיוון אחד, בלי שניתן לעשות זאת בכיוון האחר. |
|
||||
|
||||
זה כדי להראות שהיא קטנה *ממש*. לרוב רוצים להראות שהיא קטנה או שווה (טוב, זה תלוי כמובן במה שאתה מנסה לעשות, ייתכן שתרצה דווקא להראות שהיא קטנה ממש). |
|
||||
|
||||
סליחה, התבלבלתי פעמיים: פעם אחת - לא שדמתי לב שמדובר בקבוצות שוות עצמה (כי ראיתי רק שכתוב על "עצמה קטנה יותר"). ופעם שנייה - שכתבתי חח"ע, כאשר כשמדובר על קטנה ממש - לא יכולה להיות פונקצייה כזאת. צר לי. |
חזרה לעמוד הראשי |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |