|
||||
|
||||
נראה לי שאני קצת חוזר על עצמי. אני אנסה לנסח את התשובה לשאלה שלך בדרך אחרת. אני מקווה שהעובדה שאני נותן שלוש תשובות שונות לשאלת כן ולא לא תרגיז אותך יותר מידי. א. כן, היא נכונה. היא נכונה במובן שכל משפט שבה נכון מתמטית. באמת ידוע לנו שהמספר מוגדר וסופי, באמת ידוע לנו שאפשר לעשות חישובים על יצוגים עשרוניים אין סופיים בדרך שבא אנחנו עושים חישובים על יצוגים עשרוניים סופיים, כל שורה בהוכחה עצמה נכונה, והשורה האחרונה (1)נובעת מהשורות שלפניה, (2)מה שרצינו להוכיח, ו(3)נכונה. ב. לא, היא לא "נכונה". היא לא נכונה משום שבתוספת של "ידוע לנו שהמספר מוגדר וסופי" אנחנו מסתירים את "משום שידוע לנו ש-0.9999...=1" ולכן זאת הנחת המבוקש ולא ממש הוכחה. ג. תחת נסיבות מסויימות, מאד מוזרות לדעתי, היא "נכונה". אחרי הכל, להסיק באופן לוגי מסקנה "חדשה" מאקסיומות מסוימות. ברגע שהוכחנו משהו, אנחנו יכולים להעזר בו להוכיח משהו "חדש". אנחנו לא יכולים להשתמש במה ש"ידוע" אם לא הוכחנו אותו (ז"א, ידוע ש-10+10 זה 20, אבל זה לא נכון אם אנחנו עוסקים בעולם בו החיבור מוגדר כמודולו 11). יצוג עשרוני אין סופי הוא משהו שמוכר לרובינו מגיל מאד צעיר, לכן קשה מאד למחוק את הידע הזה ולנסות להתחיל מהתחלה ולבנות את הידע מחדש באופן לוגי. אם החלטת לבנות את העולם הלוגי שלך כשאתה מראה ש-0.9999... מוגדר ומתכנס, לא מחשב לאן הוא מתכנס (בגלל שבחרת לשחק עם הידיים קשורות מאחורי הגב), ומכניס את המשפט הזה לעולם המשפטים הידועים שלך, ואחר כך, משתמש במשפט הזה כמשפט עזר להוכחה האלגברית, אז כן, זאת הוכחה "נכונה", אבל לי זה נראה כמו להראות ש-1+1=2 בעזרת זה שידוע ש-1+2=3. |
|
||||
|
||||
אני לא מסכים איתך על ב. שלך. ===> משום שידוע לנו ש-0.9999...=1 לא נכון. אתה הסכמת שמשפט העזר שלי לא מסתמך על כך ש 0.999... = 1. אני לא מצליח להבין איך זה מתיישב אם מה שאתה אומר כאן. |
|
||||
|
||||
לא הסברתי את זה בג? כן, "משפט העזר" בדרך בה הוכחת אותו, לא מסתמך על כך ש 0.999... = 1. אבל זה רק נובע מהדרך שבחרת לנסח ולהוכיח אותו, והדרך שבחרת לנסח ולהוכיח אותו, נובעת רק מהעובדה שאתה ממש מתאמץ שלא להוכיח את התוצאה הסופית לפני שתערב את החלק האלגברי. "בעולם נורמלי" לא נראה לי סביר שמשפט העזר מגיע למצב "ידוע" מבלי שהוכחנו ש-0.99999=1. ב. מתייחס לעולם נורמלי, ג. מתייחס לעולם המוזר בו 1+2=3 הוא שלב בהוכחה ש-1+1=2. (אני יודע שכתבתי ממש את זה כבר שלוש פעמים. מצטער, אני לא יודע איך לנסח את המובן מאליו בצורה שונה). 1 "ידוע" במובן של הוכח, לא במובן של לא צריך להוכיח משום שהמורה בכתה ג' אמרה לי שזה ככה וזה נשמע הגיוני ומסתדר עם כל מה שאני יודע על יצוג עשרוני של מספרים. |
|
||||
|
||||
הביטוי עולם מוזר גרם לי לחייך כי נזכרתי בבעית תרבוע המעגל. יש למצוא ריבוע שווה בשטחו למעגל. אבל המתמטיקאים ממש מתאמצים לא להשתמש בנוסחה של שטח מעגל. מותר להשתמש רק במחוגה וסרגל. אני לא צוחק.. אם אני נראה לך מתאמץ שלא לצורך, על הבעיה הזו עבדו אלפי שנים. מתמטיקאים יקרים, הנה הפתרון: a^2 = pi * r^2 עושים שורש וסיימנו. |
|
||||
|
||||
(הבעיה היא לא לחשב שטח הריבוע או את אורך הצלע אלא לעשות את זה רק בעזרת סרגל ומחוגה עם מספר צעדים סופי. ההבדל בין מה שהם עשו למה שאתה עשית הוא שהם הטילו על עצמם מגבלה מבלי שהם ידעו מה תהיה התוצאה של המגבלה הזאת ואתה הטלת על עצמך מגבלה בגלל שרצית לקבל תוצאה מסויימת) |
|
||||
|
||||
קראתי שוב את ההסבר שלך. אני רוצה לסכם את המחשבות שלי, כי אני חושב שהדיון קצת מיצה את עצמו. אני מתייחס לסעיף ג. מה שאתה אומר זה נראטיב שמנסה למכור לנו הוכחה אחרת. עם הרבה דברים אני לא מסכים. אבל זה קצת עניין של טעם. הבעיה היא שהוידאו אומר באופן מפורש שההוכחה האלגברית שגויה. זהו בעיני קליק בייט. הגזמה פרועה. לכל היותר אפשר להגיד "חסר פרט קטן בהוכחה - בהנתן שהמספר הזה סופי". ואפילו בעיני קטנוני. זה דומה לכך שתסתכל על ההוכחה ששטח מעגל הוא פאי אר בריבוע ותגיד - היי! לא הוכחתם שבכלל קיים מספר כזה פאי. איך אתם יודעים שבכל המעגלים בעולם יש את היחס הזה, ושהוא בכלל מוגדר? בקיצור, הוידאו מנסה ללמד דברים מעניינים על ההגדרה של שבר עשרוני אינסופי, ועל מה שאפשר לעשות איתה. אבל הוא עושה את זה בצורה שפוסלת איזשהי הוכחה שאין איתה שום בעיה. להיפך היא הוכחה יפה לו רק בגלל שהיא משתמשת בכלים קלים יותר - אלגברה פשוטה. |
|
||||
|
||||
חותם על כל מילה, קליקבייט בריבוע. |
|
||||
|
||||
אז אני אסכם את המסקנות שלי - זאת לא "הוכחה יפה" ש"משתמשת בכלים קלים יותר", בגלל שמאחורי השימוש בכלים הפשוטים יותר עומדת ההנחה שמה שאתה מנסה להוכיח נכון (וכמו שהראת, אתה צריך להתאמץ על מנת להוכיח את אותה הוכחה בלי ההנחה הזאת). אם במקום "הוכחה" היינו משתמשים במושג אחר (עדות? ראיה?) אז נראה לי שלא היתה בעיה, אבל זאת לא "הוכחה". קליקבייט? מן הסתם, הוא צריך להרוויח כסף. כל ה"דיון" על 0.9999... הוא קליקבייט בבסיסו, הרי מהרגע שקיבלת את העבדה שאפשר לייצג את כל המספרים רציונליים בעזרת יצוג עשרוני מחזורי, קיבלת בהכרח את העובדה ש-0.999... הוא 1, וכולנו קיבלנו את זה כנכון בכיתה ג' (יכול להיות שלא לכולם זה נאמר במפורש?) ומאז לא היתה לנו סיבה לפקפק בנכונות של זה. קטנוני, מן הסתם דיון כזה חייב להיות קטנוני במידה מסוימת. אם מישהו "יוכיח" לי ששטח מעגל הוא פאי אר בריבוע ומההוכחה לא ייצא שבכל המעגלים בעולם יש יחס זהה אז אני לא יודע מה הוא הוכיח, אבל הוא לא הוכיח ששטח מעגל הוא פאי אר בריבוע (אולי הוא הוכיח את זה לגבי מעגל ספציפי? איך? למה?). אולי, בעצם, זה ההבדל בין "להראות" ששטח מעגל הוא ... לבין "להוכיח" ששטח מעגל הוא..., אז כן, ה"הוכחה" האלגברית מראה ש-0.999... הוא 1, וכן, היא עושה את זה באופן יפה תוך כדי שימוש בכלים פשוטים, אבל היא לא מוכיחה את זה. |
חזרה לעמוד הראשי | המאמר המלא |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |