|
||||
|
||||
אוי ואבוי. הפתרון היפה אליו כיוונתי (שמודגם למשל <קישור https://services.math.duke.edu/education/webfeatsII/g... כאן) ושבזכותו טרחתי להביא הנה את החידה סובל כנראה מבעיה דומה (בחירת שתי נקודות שבירה של מקל לעומת בחירה של נקודה בתוך משולש שווה צלעות). |
|
||||
|
||||
זה יפה, אבל גם האינטגרל טריביאלי. ברגע שבחרת נקודת שבירה ראשונה, נניח במרחק x מן הקצה של מקל שאורכו 1, הנקודה השנייה חייבת להיות בקטע שאורכו x, מן המחצית בכיוון הקצה השני ולכן ההסתברות המותנית היא x. האינטגרל מ-0 עד 0.5 יוצא 1/8. רק שצריך לזכור שאותו דבר אפשר לעשות מן הקצה השני. |
|
||||
|
||||
זה אמנם יפה, אבל אם אחד מקריטריוני היופי הוא פשטות, אני לא בטוח שזה יותר פשוט מהפתרונות האחרים. זאת מאחר וזה דורש שני שלבי ביניים - המשפט הגאומטרי (לא ממש מהמוכרים יותר), ולמה המשולש האמצעי פותר (זה אכן הדילוג הנאה בהוכחה הזו). ועל כל זה נטל ההוכחה שההסתברויות זהות בשני המקרים. לו היינו צריכים לנסח את הפתרון ברמה של מבחן במתימטיקה, הפתרון הזה היה לוקח יותר עמודים מאינטגרל קטן. |
|
||||
|
||||
טוב, על טעם וריח... בעיני הפשטות היא בכלים הנדרשים. תלמיד בכיתה ט' לא יודע אינטגרלים בעוד את המשפט הגיאומטרי קל להוכיח. |
|
||||
|
||||
אולי קל להוכיח אבל תלמיד כיתה ט' לא יכיר אפילו את המשפט הזה. ואת ההסתברות המותנה ההיא גם תלמיד כיתה ט' יכול להבין באינטואיציה עם קצת נפנופי ידיים ובלי אינטגרל (אם אני לא טועה דה-פקטו האיטגרל יוצא שטח של מולש, ואת זה אפשר לחשב בלי אינטגרל). בכל מקרה, אני מחבב את הפתרון הגיאומטרי כי הוא אכן נעים לעין. |
חזרה לעמוד הראשי | המאמר המלא |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |