|
||||
|
||||
הולכת חשמל למרחקים גדולים מתבצעת בזרם ישר. זרם חילופין הוא הרבה יותר הפסדי במתחים ובמרחקים האלה. עוד יתרון של זרם ישר הוא שהוא לא מחייב את כל הרשתות שמחוברות אליו להיות מסונכרנות זו עם זו, ולכן מקל על התכנון ומשפר את יציבות המערכת (במערכת מסונכרנת קריסה של מרכיב אחד עלולה להתפשט ולהפיל את כל הרשת). עובדה מעניינת היא שיפן מחולקת לשתי מערכות חשמל שונות שפועלות בתדרים שונים; החיבור בין שתי המערכות האלה הוא דרך המרה לזרם ישר. אחת הבעיות שהתגלו בעקבות אסון פוקושימה היתה שלגשר הזה בין המערכות לא היתה קבולת מספיקה, ולכן המערכת שלא כללה את התחנה בפוקושימה לא יכלה לתמוך במדה מספקת במערכת השניה ויפנים רבים נשארו ללא חשמל יותר זמן מן הנחוץ. |
|
||||
|
||||
הפוך גוטה, הפוך. הולכת זרם למרחקים מתבצעת אך ורק בזרם חילופין. אי אפשר אחרת. שנאים עובדים רק בזרם חילופין ובלעדיהם לא ניתן ליצור מתח של 400KV שהוא המתח שבשימוש בקווי ההולכה הראשיים בעולם (וגם בארץ). העלות של ישור זרם חילופין או הפיכת זרם ישר לחילופין היא גבוהה והפסדית וניתנת לביצוע רק במתחים נמוכים יחסית. אם לא מוכרחים, לא עושים את זה. |
|
||||
|
||||
High-voltage direct current [Wikipedia]:
A high-voltage, direct current (HVDC) electric power transmission system (also called a power superhighway or an electrical superhighway)123 uses direct current for the bulk transmission of electrical power, in contrast with the more common alternating current (AC) systems.4 For long-distance transmission, HVDC systems may be less expensive and have lower electrical losses. For underwater power cables, HVDC avoids the heavy currents required to charge and discharge the cable capacitance each cycle. For shorter distances, the higher cost of DC conversion equipment compared to an AC system may still be justified, due to other benefits of direct current links. Most HVDC links use voltages between 100 kV and 800 kV. A 1,100 kV link in China was completed in 2019 over a distance of 3,300 km with a power of 12 GW. 56 With this dimension, intercontinental connections become possible which could help to deal with the fluctuations of wind power and photovoltaics. |
|
||||
|
||||
אתה שם לב שמדובר בחלק קטן מאוד מרשת ההולכה בעולם? כמעט כל קווי ההולכה הם בזרם חילופין. |
|
||||
|
||||
אני מדבר על הולכה למרחקים ארוכים ובמתחים גבוהים מאד, כמו שצריך כדי להעביר חשמל מאלג'יריה לאיטליה או מקנזס לניו-יורק. זה היה נושא הדיון. לא על ההולכה מתחנת המשנה ברחוב שליד הבית שלך אל הבית. |
|
||||
|
||||
ואני דיברתי על הצורך לחבר את תחנות הכוח הסולאריות שמייצרות זרם ישר לרשת ההולכה המקומית או הארצית, שהיא משתמשת (ב-99.9% מהמקרים) בזרם חילופין. |
|
||||
|
||||
כשמדברים על ייצור חשמל מקומי או בהקפים קטנים יחסית אז כנראה תצטרך אינברטר ברמת התחנה או אפילו מערך הפאנלים שעל גג הבית. אבל עבור מצבים כמו שירדן העלה ("ויתור על אלקטרוטרקיה יעזור להתגבר על בעיית המחסור בשטח, אם באמת יש בעיה כזו, אבל לא על בעיית התנודתיות בזמן (יום-לילה, מזג אוויר). לעומת זאת, הולכת חשמל על פני מרחקים גדולים יכולה לעזור מול בעיית התנודתיות. אני מניח שכרוך בה הפסד, ואין לי מושג כמה הוא.") זרם ישר הוא פתרון יעיל יותר; בסופו של דבר אכן יהיה צורך להמיר אותו לזרם חילופין. אבל אפילו ייצור במקור של זרם חילופין עשוי לכלול המרות כאלה. למשל, טורבינות רוח מייצרות זרם חילופין אבל קשה מאד לסנכרן אותן עם התדר והפאזה של רשת נתונה, ולכן משתמשים בהמרה לזרם ישר ובחזרה לזרם חילופין מסונכרן. מכיוון אחר, מערכות אגירת אנרגיה מבוססות סוללות כמו חוות הסוללות של טסלה בדרום אוסטרליה (wikipedia Hornsdale Power Reserve) ממירות את זרם החילופין לזרם ישר כדי לאגור את האנרגיה ובחזרה לזרם חילופין כדי לשחרר אותה; במקרה הזה היכולת של הסוללות לספק זרם במאפיינים מדויקים מאד ובזמני תגובה שנמדדים במילי-שניות הם יתרון גדול לעומת מערכות סינכרוניות שמשמשות לייצוב רשת רגילה. ההמרה כאן היא יתרון ולא חסרון. |
חזרה לעמוד הראשי | המאמר המלא |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |