|
||||
|
||||
סוף סוף נמצא לי מחנה (: כאשר צריך להעריך הסתברות על סמך m הצלחות מתוך n ניסיונות ואיני יודע מהי ההתפלגות אפריורי, אני משתמש ב: p=(m+1)/(n+2) שזה מה שמקבלים אם ממצעים על כל ההתפלגויות אפריורי האפשריות (=התפלגות אחידה) ומבצעים חישוב הדומה לזה שבקישור הראשון שלך.יתרון אחד של הערכה זו לעומת זו השכיחותנית (p=m/n) הוא טיפולה האחיד בכל המקרים, כולל מקרי קצה, במיוחד כאשר מדובר במדגמים מזעריים. יתרונה השני של הערכה בייסיאנית זו הוא (כאמור לעיל) שהיא נכונה. כלומר: אם נגריל סיכוי בין אחד לאפס ונטיל מטבע שנותן "עץ" עפ"י סיכוי זה, וננסה לנחש את הסיכוי עפ"י מספר ה"עצים", ההערכה הבייסיאנית תהיה מדוייקת יותר. הנה קוד שבודק ומאשר זאת. ההפרשים אינם מרשימים - 6% במקרה זה, אבל הם מראים בבירור שההערכה השכיחותנית רחוקה יותר מן הסיכוי האמיתי מאשר זו הבייסיאנית. |
|
||||
|
||||
המשפט "אם נגריל סיכוי בין אחד לאפס ונטיל מטבע שנותן..." הוא בדיוק ההנחה הבייסיאנית הבסיסית. ברור שתחת ההנחה הזו, האנליזה הבייסיאנית היא הנכונה, וכך גם החיזויים שלה. השכיחותניים, מצד שני, לא מניחים שהסיכוי הנ"ל הוא משהו שמוגרל, אלא שהוא סתם קבוע לא ידוע. אפופידס - אתה ואני כבר דיברנו פעם בדיוק על הבעיה הזו, וכבר אז אמרתי לך שאתה בחברה מצוינת, זו של לפלאס, שניסה לענות בדיוק בדרך הזו על השאלה "מהי ההסתברות שהשמש תזרח מחר בבוקר?" (ראו את Sunrise problem [Wikipedia]). |
|
||||
|
||||
אכן דיברנו, אבל רק עכשיו התברר לי שאני מקבל עמלה שמנה על כל מומר חדש (: תוכל להסביר לי מה ההבדל בין "לא ידוע" לבין "מוגרל"? הרי בפועל, כל עוד לא מערבים קוואנטים, תמיד מדובר על "לא ידוע" - כבדוגמת זריחת השמש. אוסיף דוגמא נוספת: במסגרת מפגש ראשון עם תרבות חוצנית, אתה נשלח להתארח בפלנטה נביולון 8. בלילה הראשון שם, נודדת שנתך ובשעה 26:34 (היממה שם ארוכה יותר) אתה ניגש לחלון ומבחין בהבזק סגול חזק המציף את השמיים לכמה שניות ונעלם. אתה מגרד את פדחתך ולא מוצא לתופעה כל הסבר או מקור אפשרי שאתה יודע עליו וזה גם לא דומה למשהו הזכור לך. מאחר שכך, אתה אומר לעצמך "לפחות סטטיסטיקה אני יודע, אז אחשב מה הסיכוי להבזק דומה גם מחר". בהיותך שכיחותן, אתה מעריך שהסיכוי להבזק סגול גם מחר הוא 1. אבל אז מתעורר הבייסיאני המפוקח שבך ומעריך, עפ"י הנוסחא שבתגובתי הקודמת (תוצאת החישוב הזה) שהסיכוי להופעת ההבזק גם מחר הוא רק 2/3. בשבוע בו אתה מבלה שם אתה ממשיך לחשב בשני אופנים את הסיכויי להישנות כל תופעה שאינה קשורה לשום דבר שאתה מכיר בה אתה נתקל (לעיתים יותר מפעם אחת), לטובת הארצן שיחליף אותך. בסופו של דבר מגיעים שניים לשהות של כמה שנים. לאחר שהם חוזרים לכד"א אתם נפגשים ואתה בודק את תיעודיהם הנוגעים לאירועים אותם תיעדת ומשווה את שכיחותם להערכות שנתתה. היכן תהיה השגיאה הממוצעת נמוכה יותר - בהערכות הבייסיאניות או באלו השכיחותניות? |
|
||||
|
||||
מוגרל != מוגרל מהתפלגות אחידה. |
|
||||
|
||||
כמובן. טענתי היא שבהינתן שלא ידוע מהי ההתפלגות, ממצעים על כל ההתפלגויות האפשריות ומקבלים...התפלגות אחידה. |
|
||||
|
||||
מטבע יכול לפול גם על הצד הצר. למה אתה לא ממצע על כל ההתפלגויות על שלוש אפשרויות? למה לקחת רק את האפשרויות "יהיה הבזק סגול" ו"לא יהיה הבזק סגול", והתעלמת מ"יהיה הבזק ירוק", ו"יהיה ריח של כרוב כבוש"? |
|
||||
|
||||
אבל מה התפלגות ההתפלגויות ? |
|
||||
|
||||
השאלות שאתה שואל נוגעות לתשתית הלוגית/פילוסופית של תורת ההסתברות, שאני לא בקיא בה במיוחד. אנסה להגג קצת בכל זאת. לגבי ההבדל בין "לא ידוע" ל"מוגרל" - אתה מן הסתם לא יודע מה אכלתי היום לארוחת הבוקר, אבל תסכים אתי שזה יהיה קצת מאולץ לחשוב על הגרלה בהקשר הזה. מהמלה "מוגרל" משתמע שקיימת איזושהי התפלגות ממנה מגרילים, ואולי הטענה המרכזית כנגד הגישה הבייסיאנית היא שכל ניסיון לנקוב במפורש בהתפלגות שכזו הוא בעייתי. למשל, אם מנסים לבחון האם מטבע נתונה, אמיתית לגמרי, היא הוגנת או לא, זה יהיה קצת מוזר להניח אפריורי (כלומר לפני שהטלנו אותה) התפלגות אחידה בין 0 ל-1 להסתברות שהיא מראה "עץ" (הרי ברור שההסתברות הזו היא באיזור 1/2); מצד שני, כל ניסיון לנקוב בהתפלגות אחרת יהיה שרירותי במידה רבה (זה מתקשר להבדל שבין informative prior לבין non-informative prior). כשהפרמטר שמנסים לאמוד לא מוגבל לתחום חסום שקצוותיו ידועים המצב יותר גרוע, כי קשה עוד יותר לחשוב על התפלגות אפריורית הגיונית: ההסתברות ל"עץ" בדוגמא הקודמת היתה בהכרח בין 0 ל-1, אבל כשמנסים לאמוד, למשל, דברים שקשורים לעוצמות של רעידות אדמה (שכידוע, אינן חסומות מלמעלה), אנחנו בבעיה. קיימת גישה סטטיסטית בשם Empirical Bayes שמנסה להתגבר על הבעיה הזו דרך שימוש בנתונים עצמם כדי להרכיב התפלגות אפריורית (נשמע אוקסימורון, נכון?), אבל אני לא מבין מספיק כדי לספר עליה עוד. בנוגע לדוגמת החוצנים: אף סטטיסטיקאי - שכיחותן, בייסיאני, או מה שזה לא יהיה - לא ינסה להסיק או לחזות ממדגם של נתון אחד בלבד, ולכן אני מוחה בתוקף כנגד ההשמצה הפרועה "בהיותך שכיחותן, אתה מעריך שהסיכוי להבזק סגול גם מחר הוא 1". בכלל, יש תופעות שלא צריך להחיל עליהן אנליזה הסתברותית/סטטיסטית כי הן לא שייכות לתחום השיפוט של הדיסציפלינות האלה (זה מתקשר יפה להבדל בין העידן השני לשלישי בהיסטוריה של המחשבה האנושית אליבא דאפרון, כפי שציטטתי אותו בתגובה 583799). גם את האנליזה של לפלס על ההסתברות שהשמש תזרח מחר אף אחד לא לוקח היום ברצינות, וזה לא בגלל שהיום יודעים שהעולם קיים יותר מ-6000 שנה. ולגבי השאלה האחרונה שלך, "היכן תהיה השגיאה הממוצעת נמוכה יותר - בהערכות הבייסיאניות או באלו השכיחותניות?", התשובה כמובן תלויה בהנחות המודל שלך על העולם. אם הן בייסיאניות, ואתה צודק בהתפלגויות האפריוריות שאתה מניח, אז כמובן שההערכות הבייסיאניות יהיו יותר מדויקות, ולהיפך. זו אולי נראית תשובה מתחמקת, אבל אם אתה מתכוון לערוך ניסוי אמיתי על כל מיני תופעות בחיים סביבנו, אז התוצאה שלו תהיה מאד תלויה בבחירה של התופעות שתחקור. בשאלות כמו "האם עצמים נופלים למעלה או למטה" הגישה הבייסיאנית תפסיד בנוק-אאוט, בשאלות כמו "האם גברים בממוצע גבוהים יותר מנשים" היא תפסיד בנקודות, ועל שאלות כמו "האם תרופה א' עובדת טוב יותר מתרופה ב"' ימשיכו הביוסטטיסטיקאים להתווכח. העניין שוב מתקשר לגבולות השיפוט של השיטה ההסתברותית/סטטיסטית. |
|
||||
|
||||
הועלו כאן כמה עניינים הדורשים ממני חשיבה מחודשת. אחשוב ואשוב. |
|
||||
|
||||
מדגם של נתון אחד בלבד עשוי להיות בעל משמעות רבה מאוד. למשל, פגשת אדם חדש. באינטרקציה הראשונה בינכם הוא פישל (פשלות הן עניין סטטיסטי) האם אמונך בו ישתנה לאחר המדגם היחיד? בתיאוריה סטטיסטית, המצב מובהק (הא!) עוד יותר. מדגם של ניסוי אחד אינו שונה מהותית מכל מדגם אחר. ספציפית, נניח שההבזק הסגול הופיע ברצף 10 פעמים. האם מוצדק להסיק שהסיכוי לו הוא 1? השיטה הבייסיאנית מובילה לעיתים לתוצאות שנראות מוטעות, או נחותות, כמו למשל, שהשמש לא תזרח מחר. זכור, כי מבחינה פיזיקלית, יגיע יום כזה. אם הבייסיאנים היו יכולים לשרוד עד אז, הם היו צוחקים אחרונים. לגבי השגיאה הממוצעת - בהנתן בדיקה של תופעות ש*באמת* אין עליהן מידע מוקדם, השיטה הבייסיאנית תנצח בנוק אאוט מרהיב. השכיחתן שהגיע בלילה ימדוד כל דקה וימהר להכריז שתמיד יהיה חושך, וזה שיגיע בחורף יחליט שתמיד קר. |
|
||||
|
||||
מצחיק שעושים ניסויים אמפיריים כדי להוכיח התפלגות סטטיסטית, מצחיק עוד יותר שזה עובד, SPOOKY... |
חזרה לעמוד הראשי | המאמר המלא |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |