|
לאחר שביזבזתי סופ"ש שלם על סידור המרתף 1, אני יכול עתה להגיב בניחותא. בקצרה: נדמה לי שאנו מסכימים על העיקר אך בכמה פרטים יש ביננו אי-הבנה שאיני מצליח לפוגג, שלא לדבר על האפשרות הבלתי סבירה שאני טועה (:
אכן איני רואה הבדל בין תורה מתמטית לבין כזו המתקבלת מתורה מתמטית ע"י הוספת אקסיומות ("מקרה פרטי"). האם לא ניתן לקחת כל מערכת אקסיומות ולראותה כמודל של כל מערכת המוכלת בה ממש? אם כן, מהי ההפרדה הזו לתורה ולמודל?
לגבי גודלה/עוצמתה של מערכת האקסיומות המינימלית (או החסם התחתון לה, או מה שלא יהיה) העומדת בבסיס יקומנו – איני יודע.
לגבי המספר אחד: שתי אקסיומות פאנו הראשונות הן 2: • קיים מספר טבעי 0. • לכל מספר טבעי a קיים עוקב. משפט: קיים עוקב למספר אפס (יש הקוראים לו "אחד" – למשל אני). לזאת התכוונתי ב"המספר 1 הוא משפט המתקבל מאקסיומות פאנו".
בעניין האקסיומות ותפקידן – אני מסכים עם עיקר דבריך – אלא שאין הם מנוגדים לדבריי, לפחות במובן לו התכוונתי בתגובות קודמות. בכל אופן, אם אנו מסכימים על: "כל מבנה מתמטי - קיים, וכל מה שקיים - מבנה מתמטי" – דיינו, שכן זהו העיקר 3.
בעניין משחק החיים: לאחר קריאת הערך בויקיפדיה אליו הפנית, נראה שלבד מהיות מגניב באופן מיוחד, הוא אכן "מבנה מתמטי מפורט, העומד בפני עצמו (למשל ללא תלות בזמן חיצוני) ומכיל כל אחד מפרטי המשחק."
לגבי "אך לא רק אקסיומות נדרשות ליקומנו וליקומים מסוגו" – ייתכן מאוד שהניסוח כאן לוקה, אך הכוונה היתה שגם אם כל מערכת עקבית של אקסיומות יוצרת מבנה בר-קיימא, רק מערכות בעלות מאפיינים מסויימים יוצרות יקומים הדומים לזה שלנו מבחינות פיסיקליות. אמירה מהפכנית לכל הדעות (:
אסיים בקישורים שסל המיחזור לי גדוש מהכיל ולכן אני מעדיף להשליך אותם כאן (אל דאגה, מחר תפנה אותם המשאית של העיריה): ציפ-ציפ: http://birdloversonly.blogspot.com/2007/09/may-i-hav... מיאו: http://www.youtube.com/watch?v=3S4hNMqDhoo בלופ (נדמה לי שככה עושה תא, בכל אופן סרט שווה, אך לוקח זמן רב לטעון אותו): http://www.studiodaily.com/main/technique/tprojects/... בום (גם כן ארוך וגם כן שווה): http://www.youtube.com/watch?v=1uwOL4rB-go
2 מספר טבעי [ויקיפדיה]
3 אם נניח לרגע בצד את עשיית הטוב
|
|