|
||||
|
||||
אם אני זוכר נכון (והידע שלי כאן הוא צנוע מאוד), אז ברגע שיש לך שני חלקיקים זהים, מדידות באחד מהם משפיעות על השני, לכן עקרון אי הוודאות אינו מופר. זה נשמע מוזר, אבל יש לזה הוכחה הסתברותית (ליתר דיוק שלילה של משתנים מקומיים חבויים) בניסוי ששכחתי את שמו. |
|
||||
|
||||
האייל האלמוני שם מדבר על מכפלות טנזוריות של פעולות אונטיריות במרחבי-הילברט. קצת מוזר שאתה מנסה להסביר לו דברים כל כך בסיסיים. בכל מקרה, אתה מתבלבל בין ''חלקיקים זהים'' ל-''חלקיקים שזורים'' (למיטב הבנתי הצנועה, שני חלקיקים הם זהים אם ורק אם הם אותו החלקיק, או לפחות זו המסקנה של הדיון). הניסוי עליו אתה מדבר הוא כנראה אי-שוויון בל. |
|
||||
|
||||
הרבה דברים מסובכים הבנתי רק אחרי שמישהו הזכיר לי את הבסיס הפשוט. בכוונה נמנעתי מלהשתמש במתמטיקה שאינני שולט בה כראוי. האייל כותב ''אבל התכונה החשובה ביותר של שכפול חלקיק, היא שניתן למדוד כל אחד מהעותקים באופן בלתי-תלוי.'' ברור שאנחנו לא יכולים ליצור חלקיק יש מאין, לכן אני הבנתי את שיכפול החלקיק כמתן תכונות זהות לחלקיק אחר, זו פעולה דומה לשזירה. |
חזרה לעמוד הראשי | המאמר המלא |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |