|
||||
|
||||
יובל, היות והלינק שצרפת http://www.statsresearch.co.nz/pdf/confint.pdf ממש מפתח את הקשר בין רווחי הסמך של פילוג בינומי לפונקציית F (כלומר מפתח את מה שקראת "הנוסחה המתאימה"), אני חושב שמוטב ששנינו נקבל את ההגדרה שלו לרווח הסמך (נוסחאות 1 ו-2): עבור פילוג בינומי עם n משחקים ו-x הצלחות ונניח שהסמך שלנו הוא 95%. רווח סמך של (Φ,Ψ) אומר שההסתברות שהמשתנה האקראי X (מספר ההצלחות) בפילוג של n משחקים עם סיכוי הצלחה p=Φ, יהיה גדול מ-x הוא 2.5% (ומשהו מקביל עבור Ψ). אני חושב שזה תואם את ההגדרות שלך (אין פילוג על הפרמטרים). לגבי ההגדרה שלי יש לי את האפשרות לחשב בעצמי או להאמין לך (98%). אני בוחר כמובן באפשרות הקלה ומרים ידיים (בפרט שאני חושב שהבנתי את ההגדרה שלמעלה). וחוב אחרון: יוסי השחור ואתה צדקתם בעניין חוסר המשמעות של ההסתברות של מספר הממתינים להיות כזה או אחר. כל העיסוק פה הוא סביב ההסתברות שהנשאל הראשון שלך יהיה מספר כזה או אחר בתור. |
|
||||
|
||||
שאלה ליובל נוב בדוגמת התור, או הפיסטוקים, או הטנקים: אם נאמוד את N כממוצע המדגם כפול שתיים, האם היעילות תקטן? |
|
||||
|
||||
לפני שאני עונה: למה אתה קורא "המדגם" (האם שואלים רק איש אחד בתור, או כמה?), ולמה בדיוק אתה מתכוון ב"יעילות"? |
|
||||
|
||||
אם שואלים רק איש אחד אז הוא המדגם, אבל נניח ששואלים מספר אנשים. וב'יעילות' אני מתכוון לשונות קטנה (ניסיתי להשתמש במונחים שלך). |
|
||||
|
||||
השונות (וכמובן גם סטיית התקן) של האמד "פעמיים הממוצע" היא גבוהה מזו של האמד "התצפית הגבוהה ביותר", ולכן במובן זה האמד השני עדיף. הנ"ל נכון גם אם המדגם הוא של ממתין/פיסטוק/טנק בודד, וגם אם "מתקנים" את האמד השני לאמד חסר הטייה על-ידי כפל ב- n+1 חלקי n (פה n זה גודל המדגם). במונחים של יעילות, אומרים במקרה זה כי *היעילות היחסית* של האמד "התצפית הגבוהה ביותר" היא גדולה מ-1, יחסית לאמד "פעמיים הממוצע" (יעילות יחסית זה סתם יחס שונויות). כשאומרים על אמד שהוא "יעיל" - לא ביחס לאמד אחר, אלא סתם, יעיל - מתכוונים שהשונות שלו משיגה את החסם התחתון על שונות אמדים שמציב אי-שוויון קרמר-ראו. הנקודה היא שמשפט קרמר-ראו לא חל על המקרה שלנו, משום שפונקצית הצפיפות של ההתפלגות האחידה לא עומדת בתנאי המשפט (היא לא "חלקה" מספיק), ונוצר מצב מבורך בו השונות של שני האמדים דנן היא *עוד יותר* נמוכה מהחסם התחתון. |
|
||||
|
||||
|
||||
|
||||
ההגדרה לרווח סמך שבלינק היא שקולה לתיאור שנתתי, והשקילות נובעת מהדואליות בין רווחי סמך לבין מה שנקרא "בחינת השערות". הופתעתי לגלות שקשה למצוא לינק פשוט שיסביר את השקילות (הרעיון הוא מאד יסודי בסטטיסטיקה, והסטודנטים בקורס המבוא שאני מלמד הסמסטר בדיוק נבחנו עליו, בין השאר, היום). הנה משהו לא אופטימלי: http://www.itl.nist.gov/div898/handbook/prc/section1... |
|
||||
|
||||
מעצבן, נכון? אתה מוזמן לכתוב את [[רווח סמך]] בויקיפדיה. |
חזרה לעמוד הראשי | המאמר המלא |
מערכת האייל הקורא אינה אחראית לתוכן תגובות שנכתבו בידי קוראים | |
RSS מאמרים | כתבו למערכת | אודות האתר | טרם התעדכנת | ארכיון | חיפוש | עזרה | תנאי שימוש | © כל הזכויות שמורות |